Какие вещества участвуют в биосинтезе белка. Этапы биосинтеза белка

Зачем нам белки

Все мы знаем, как важны для живого организма белки, ведь именно из них построены ткани нашего тела. Подавляющая часть биохимических реакций в нем катализируется именно белками (ферментами). Эти сложные вещества входят в состав клеточных мембран (транспортные) и обеспечивают защиту всего организма от чужеродных агентов (иммуноглобулины).

С помощью них мы перевариваем пищу (пищеварительные ферменты) и двигаемся (белки мышечной ткани), они работают в кровеносной системе, обеспечивая свертывание крови, и являются продуктом эндокринной системы, регулируя все процессы в теле.

Как устроен белок и где он создается

Белковая молекула состоит из органических соединений — аминокислот. Каждая клетка тела должна "уметь" производить белок как для собственных нужд, так и для всего организма. Процесс этого "производства" и называется биосинтез белка. Где он проходит внутри живой клетки?Для того чтобы создавать белковые молекулы, каждая мельчайшая частичка тела имеет "белковосинтетические станции" — рибосомы. Это маленькие внутриклеточные органеллы, их единственной функцией является биосинтез белка. Они занимаются этим довольно эффективно: одна рибосома за одну секунду создает белковую цепочку из 20 аминокислот.

Для того, чтобы соединить эти отдельные кислоты с аминогруппой в длинную молекулу белка с уникальными специфическими свойствами, требуется знать, какое количество молекул определенного вида необходимо соединить в строгом порядке. Откуда рибосоме все это "известно"? Вся информация о том, как должен проходить биосинтез белка в клетке, "записана" в ядре последней, закодирована в гигантской молекуле ДНК — средоточии всей генетической информации живого организма. Вот почему биосинтез белка начинается в центральной органелле — ядре. Там происходит первая стадия этого процесса — копирование информации для перенесения ее на рибосомы.

Этапы биосинтеза белка

Чтобы приступить к "сборке" белковой молекулы, как уже было упомянуто, рибосома должна получить информацию о том, как это делать, и аминокислоты, из которых она будет "сооружать" белок. Весь процесс начинается с "переписывания" информации о структуре будущей белковой молекулы с ДНК на информационную РНК (и-РНК). Последняя у эукариотической клетки подвергается процессингу — созреванию. Он заключается в формировании более короткой молекулы путем "вырезания" неинформативных участков. Следующий этап характерен тоже только для эукариотической "единицы живой материи" — перенос и-РНК из ядра в цитоплазму. Параллельно в последней транспортные РНК (т-РНК) посредством ферментов соединяются с соответствующей аминокислотой. Наконец, далее следует этап трансляции — вот это уже, собственно, биосинтез белка, происходящий на рибосоме. Завершающей стадией всего сложного процесса становится "созревание" белка. Он приобретает нужную вторичную и третичную структуру, к нему присоединяются небелковые составляющие (например, гем, молекулы металлов, липиды, нуклеотиды, витамины). "Готовая" белковая молекула используется клеткой или выделяется из нее.

Синтез белка - очень важный процесс. Именно он помогает нашему организму расти и развиваться. В нем участвуют многие структуры клетки. Ведь для начала необходимо понять, что именно мы собираемся синтезировать.

Какой белок нужно строить в данный момент - за это отвечают ферменты. Они получают сигналы от клетки о необходимости того или иного белка, после чего начинается его синтез.

Где проходит синтез белка

В любой клетке основное место биосинтеза белка - рибосома. Это крупная макромолекула со сложной асимметричной структурой. Состоит она из РНК (рибонуклеиновые кислоты) и белков. Рибосомы могут располагаться поодиночке. Но чаще всего они объединяются с ЭПС, что облегчает последующие сортировку и транспорт белков.

Каждая аа-тРНК-синтетаза узнает только свою аминокислоту и только ту тРНК, к которой ее надо прикрепить. Получается, что в это семейство ферментов входит 20 разновидностей синтетаз. Осталось сказать лишь то, что аминокислоты прикрепляются к тРНК, точнее, к ее гидроксильному акцепторному «хвосту». Каждой кислоте должна соответствовать своя транспортная РНК. За этим следит аминоацил-тРНК-синтетаза. Она не только сопоставляет аминокислоты с правильным транспортом, она также регулирует реакцию образования сложноэфирной связи.

После успешной реакции прикрепления тРНК следует к месту синтеза белка. На этом заканчиваются подготовительные процессы и начинается трансляция. Рассмотрим основные этапы биосинтеза белка:

  • инициация;
  • элонгация;
  • терминация.

Стадии синтеза: инициация

Каким образом происходит биосинтез белка и его регуляция? Ученые пытались узнать это долгое время. Выдвигались многочисленные гипотезы, но чем современнее становилось оборудование, тем лучше мы стали понимать принципы трансляции.

Рибосома - основное место биосинтеза белка - начинает читать мРНК с той точки, с которой начинается ее часть, кодирующая полипептидную цепь. Эта точка располагается на определенном удалении от начала матричной РНК. Рибосома должна узнать точку на мРНК, с которой начинается считывание, и соединиться с ней.

Инициация - комплекс событий, которые обеспечивают начало трансляции. В ней участвуют белки (факторы инициации), инициаторная тРНК и специальный инициаторный кодон. На этом этапе малая субъединица рибосомы соединяется с белками инициации. Они не дают ей связаться с большой субъединицей. Зато позволяют соединиться с инициаторной тРНК и ГТФ.

Затем этот комплекс «садится» на мРНК, именно на тот участок, который узнается одним из факторов инициации. Ошибки быть не может, и рибосома начинает свой путь по матричной РНК, читая ее кодоны.

Как только комплекс доходит до инициирующего кодона (АУГ), субъединица прекращает движение и с помощью уже других белковых факторов связывается с большой субъединицей рибосомы.

Стадии синтеза: элонгация

Прочтение мРНК предполагает последовательный синтез полипептидой цепи белка. Он идет путем добавления одного аминоксилотного остатка за другим к строящейся молекуле.

Каждый новый аминокислотный остаток добавляется к карбоксильному концу пептида, С-конец является растущим.

Стадии синтеза: терминация

Когда рибосома доходит до терминирующего кодона синтез полипептидной цепочки прекращается. В его присутствии органелла не может принять какую-либо тРНК. Вместо нее в дело вступают факторы терминации. Они высвобождают готовый белок из остановившейся рибосомы.

После терминации трансляции рибосома может либо сойти с мРНК, либо продолжить скользить по ней, не транслируя.

Встреча рибосомы с новым инициаторным кодоном (на этой же цепи во время продолжения движения или же на новой мРНК) приведет к новой инициации.

После того как готовая молекула покидает основное место биосинтеза белка, она маркируется и отправляется в пункт назначения. Какие функции она будет выполнять, зависит от ее структуры.

Регулирование процесса

В зависимости от своих потребностей клетка будет самостоятельно контролировать трансляцию. Регуляция биосинтеза белка - очень важная функция. Она может осуществляться разными способами.

Если клетка не нуждается в каком-то соединении, она прекратит биосинтез РНК - биосинтез белка тоже перестанет происходить. Ведь без матрицы не начнется весь процесс. А старые мРНК быстро распадаются.

Существует и другая регуляция биосинтеза белка: клетка создает ферменты, которые мешают протеканию фазы инициации. Они мешают трансляции, даже если матрица для считывания есть в наличии.

Второй способ необходим в том случае, когда синтез белков нужно выключить прямо сейчас. Первый способ предполагает продолжение вялотекущей трансляции еще некоторое время после прекращения синтеза мРНК.

Клетка является очень сложной системой, в которой все держится на балансе и четкой работе каждой молекулы. Важно знать принципы каждого процесса, протекающего в клетке. Так мы лучше сможем понимать происходящее в тканях и в организме в целом.

План лекции:

1. ТРАНСКРИПЦИЯ.

2. ПОНЯТИЕ О КОМПЛЕМЕНТАРНОСТИ.

3. ТРАНСЛЯЦИЯ.

4. МАТРИЧНЫЙ СИНТЕЗ.

Наиболее сложные органические вещества в клетке – белки. В процессе жизнедеятельности клетки они деформируются, денатурируются и на смену им создаются новые. Таким образом, биосинтез белков идет постоянно – ежеминутно клетка синтезирует несколько тысяч новых белковых молекул. Синтез белка состоит из нескольких этапов.

Транскрипция – Синтез белка происходит при участии ДНК, так как именно в молекуле ДНК записана структура белка, то есть определенный порядок расположения аминокислот. Участок молекулы ДНК, который несет в себе информацию о структуре индивидуального белка, называется геном .

С ДНК информация о структуре создаваемого белка переписывается на другую нуклеиновую кислоту – РНК. Таким образом, ДНК является матрицей, которая обеспечивает “отливку” первоисточника на молекулу РНК. Но РНК не только копирует структуру создаваемого белка, но и передает эту информацию из ядра клетки в рибосомы. Такая РНК называется информационной, она может содержать несколько тысяч нуклеотидов. Процесс переписывания информации с ДНК на РНК называется транскрипцией .

Если бы каждой аминокислоте (их 20) соответствовала своя «буква», то есть свой нуклеотид ДНК – всё было бы просто: определенная аминокислота списывалась бы со своего нуклеотида. Но нуклеотидов всего 4. Значит, на клеточную РНК может быть переписано лишь 4 аминокислоты. Остальные 16 не могли бы осуществить эту операцию. Поэтому природа изобрела другой механизм передачи информации – с помощью специального кода.

Изобретенный природой в процессе эволюции код ДНК состоит из 3 «букв» – 3-х нуклеотидов. Таким образом, каждой аминокислоте соответствует не один нуклеотид, а определенное сочетание 3-х нуклеотидов, которые называются «триплетом».

Например: аминокислота «Валин» кодируется следующей последовательностью нуклеотидов – Ц-А-А (цитозин – аденин – аденин). Аминокислота лейцин – А-А-Ц (аденин – аденин – цитозин). Поэтому, если в определенной части ДНК порядок нуклеотидов будет: Ц-А-А-А-Ц-А-А-А-Ц-Г-Г-Г, то, разбив этот ряд на тройки – «триплеты», можно расшифровать закодированные аминокислоты – Валин – цистеин – лейцин – пролин.

Для того чтобы передать информацию с ДНК на РНК, необходимо, чтобы передающее и воспринимающее устройства были настроены на одну волну посредством комплементарности . То есть, определенным нуклеотидам ДНК должны соответствовать конкретные нуклеотиды РНК. Например: если в одном месте цепи ДНК стоит нуклеотид Г (гуанин), то против него в цепочке РНК должен располагаться нуклеотид Ц (цитозин).

Таким образом, нуклеотиды РНК согласно принципу комплементарности будут располагаться следующим образом: Г(ДНК)-Ц(РНК), Ц(ДНК)-Г(РНК), А(ДНК)-У(РНК), Т(ДНК)-А(РНК) (У-уридил, Т-тимидил). Таким образом, одна и та же аминокислота – пролин в молекуле ДНК записывается триплетом Г-Г-Г, а после переписи на ДНК кодируется триплетом Ц-Ц-Ц.

Трансляция . Следующий этап состоит в том, что молекулы клеточной РНК покидают ядро и выходят в цитоплазму, где вступают в контакт с рибосомами. К рибосомам также направляется и строительный материал клетки – аминокислоты, из которых собираются молекулы белка в соответствии с кодом клеточной РНК. Транспортировку аминокислот к рибосомам осуществляет особый вид РНК – транспортный . Молекула её представляет собой короткие одинарные цепочки нуклеотидов. Каждая из 20 аминокислот имеет свою транспортную РНК, молекула транспортной РНК строго специфична. Перед тем как принять непосредственное участие в сборке молекулы белка, аминокислота заряжается за счёт АТФ. Эту энергию поставляют митохондрии. Заряженные энергией аминокислоты в сопровождении транспортной РНК направляются к рибосомам, где и происходит синтез белка.

Рибосомы состоят из 2 неравных долей, через которые, как сквозь бусинку, продергивается молекула транспортной РНК. Ещё этот процесс можно сравнить с прохождением магнитной ленты сквозь звукоснимающую головку, только РНК скользит не плавно, а шажками.

Таким образом, имеется 3 вида РНК – информационная, транспортная и рибосомальная – последняя входит в состав рибосом.

При сборке белковых молекул природа использует принцип матричного синтеза , чтобы обеспечить точное соответствие создаваемых молекул белка с планом, который заложен в структуре уже существующей молекулы.

Схематически весь процесс можно представить так: нитевидная РНК унизана телами округлой формы. Это рибосомы. 1 рибосома, нанизанная на нить с левого конца, начинает синтез белка. По мере её продвижения по нити РНК происходит сборка белковой молекулы. Затем на нить вступает 2, 3... и каждая собирает свой белок, который определен матрицей. Одновременно в каждую рибосому, движущуюся по нити РНК, поступают аминокислоты, сопровождаемые транспортным РНК. При этом присоединяется только та аминокислота, которая (согласно комплементарности) соответствует коду молекулы ДНК.

Этот процесс называется трансляцией . Соединение аминокислот между собой происходит под влиянием ферментов. Когда молекула белка готова, рибосомы соскакивает с нити РНК, и она освобождается для сборки новой молекулы. Готовая молекула белка перемещается в тот участок клетки, где она требуется. Процесс сборки молекулы белка идет очень быстро – за четверть секунды образуется молекула белка, состоящая из 146 аминокислот.

Программа сборки молекулы белка поступает в виде информационной РНК в рибосомы. «Строительный материал» – аминокислоты доставляются к месту сборки транспортной РНК. Матричный принцип обеспечивает такое построение белковой молекулы, который был ранее определен ДНК. Производство белка связано с расходованием энергии и осуществляется с участием ферментов. Энергию поставляют митохондрии, а переносчиком её является богатое энергией вещество АТФ.

Вопросы для самоподготовки:

1. Функции белка в клетке.

2. Этапы биосинтеза белка.

3. ДНК: расположение в клетке, роль в биосинтезе белка.

4. Разновидности РНК, их функции.

5. Транскрипция, участие ДНК и РНК.

6. Трансляция, роль рибосом.

7. Понятие о комплементарности.


Вспомните, из каких компонентов состоят белки и нуклеиновые кислоты. Что такое генетический код? В чем сущность реакций матричного синтеза? Как происходит синтез РНК?

Белки - единственные органические вещества клетки (кроме нуклеиновых кислот), биосинтез которых осуществляется под прямым контролем ее генетического аппарата. Сама сборка белковых молекул осуществляется в цитоплазме клетки и представляет собой многоэтапный процесс, для которого нужны определенные условия и ряд компонентов.

Условия и компоненты биосинтеза белка. Биосинтез белка зависит от деятельности различных видов РНК. Информационная РНК (иРНК) служит посредником в передаче информации о первичной структуре белка и матрицей для его сборки. Транспортная РНК (тРНК) переносит аминокислоты к месту синтеза и обеспечивает последовательность их соединений. Рибосомальная РНК (рРНК) входит в состав рибосом, на которых происходит сборка полипептидной цепи. Процесс синтеза полипептидной цепи, осуществляемый на рибосоме, называют трансляцией (от лат. трансляцио - передача).

Для непосредственного биосинтеза белка необходимо, чтобы в клетке присутствовали следующие компоненты:

  1. информационная РНК (иРНК) - переносчик информации от ДНК к месту сборки белковой молекулы;
  2. рибосомы - органоиды, где происходит собственно биосинтез белка;
  3. набор аминокислот в цитоплазме;
  4. транспортные РНК (тРНК), кодирующие аминокислоты и переносящие их к месту биосинтеза на рибосомы;
  5. ферменты, катализирующие процесс биосинтеза;
  6. АТФ - вещество, обеспечивающее энергией все процессы.

Строение и функции тРНК. Процесс синтеза любых РНК - транскрипция (от лат. транскрипций - переписывание) - относится к матричным реакциям (об этом было сказано ранее). Теперь разберем строение транспортной РНК (тРНК) и процесс кодирования аминокислот.

Транспортные РНК представляют собой небольшие молекулы, состоящие из 70-90 нуклеотидов. Молекулы тРНК свернуты определенным образом и напоминают по форме клеверный лист (рис. 62). В молекуле выделяются несколько петель. Наиболее важной является центральная петля, в которой располагается антикодон. Антикодоном называют тройку нуклеотидов в структуре тРНК, комплементарно соответствующих кодону определенной аминокислоты. Своим антикодоном тРНК способна соединяться с кодоном иРНК.

Рис. 62. Строение молекулы тРНК

На другом конце молекул тРНК всегда находится тройка одинаковых нуклеотидов, к которым присоединяется аминокислота. Реакция осуществляется в присутствие специального фермента с использованием энергии АТФ (рис. 63).

Рис. 63. Реакция присоединения аминокислоты к тРНК

Сборка полипептидной цепи на рибосоме. Сборка цени начинается с соединения молекулы иРНК с рибосомой. По принципу комплементарности тРНК с первой аминокислотой соединяется антикодоном с соответствующим кодоном иРНК и входит в рибосому. Информационная РНК сдвигается на один триплет и вносит новую тРНК со второй аминокислотой. Первая тРНК передвигается в рибосоме. Аминокислоты сближаются друг с другом, между ними возникает пептидная связь. Затем иРНК вновь передвигается ровно на один триплет. Первая тРНК освобождается и покидает рибосому. Вторая тРНК с двумя аминокислотами передвигается на ее место, а в рибосому входит следующая тРНК с третьей аминокислотой (рис. 64). Весь процесс вновь и вновь повторяется. Информационная РНК, последовательно продвигаясь через рибосому, каждый раз вносит новую тРНК с аминокислотой и выносит освободившуюся. На рибосоме постепенно растет полипептидная цепь. Весь процесс обеспечивается деятельностью ферментов и энергией АТФ.

Рис. 64. Схема сборки полнпептидпои цепи иа рибосоме: 1-4 последовательность этапов

Сборка полипептидной цепи прекращается как только в рибосому попадает один из трех стоп-кодонов. С ними не связана ни одна тРНК. Освобождается последняя тРНК и собранная полипептидная цепь, а рибосома снимается с иРНК. Полипептидная цепь затем претерпевает структурные изменения и превращает в белок. Биосинтез белка закончен.

Процесс сборки одной молекулы белка длится в среднем от 20 до 500 с и зависит от длины полипептидной цеп и. Например, белок из 300 аминокислот синтезируется приблизительно за 15-20 с. Белки структурно и функционально очень разнообразны. Они определяют развитие того или иного признака организма, что является основой специфичности и неоднородности живого.

Реализация наследственной информации в клетке. Реализация наследственной информации в живом осуществляется в реакциях матричного синтеза, протекающих в клетке (рис. 65).

Рис. 65. Реализация наследственной программы в клетке: 1 - транскрипция; 2 - реакция присоединения аминокислоты; 3 - трансляция; 4 - ДНК; 5 - информационная РНК; 6 - транспортная РНК; 7 - аминокислота; 8 - рибосома; 9 - синтезированный белок

Редупликация ведет к построению новых молекул ДНК, что необходимо для точного копирования генов и их передачи дочерним клеткам от материнской при делении. Биосинтез белка также связан с генетическим кодом и генами. Посредством реакций транскрипции и трансляции, для которых необходимы РНК, аминокислоты, рибосомы, ферменты и АТФ, в клетке синтезируются специфические белки. Они определяют ее характерные признаки, т. к. в первую очередь при биосинтезе происходит сборка белков-ферментов, отвечающих за протекание жизненных реакций в клетке.

Биосинтез белка является частью процесса реализации генетической программы клетки и всего организма. Этот процесс, как и синтез РНК, и редупликация ДНК, относится к реакциям матричного синтеза. Но в отличие от двух последних реакций биосинтез белка протекает на органоидно-клеточном уровне организации живого.

Упражнения по пройденному материалу

  1. Какие условия необходимы для биосинтеза белка в клетке?
  2. Расскажите, как происходит присоединение аминокислот к молекулам тРНК.
  3. Какие участки молекулы тРНК определяют положение ами нокислоты в полипептидной цепи?
  4. Почему необходимо точное ко пирование генетической информации при биосинтезе белка? Какие ре акции обеспечивают ее реализацию?
  5. Как происходит сборка поли пептидной цепи на рибосоме?
  6. В чем основное отличие реакций мат ричного синтеза от реакций диссимиляции и фотосинтеза? Ответ обоснуйте.

До середины 50-х гг. считалось, что центром синтеза белка являются микросомы. Позднее было установлено, что в биосинтезе участвуют не все микросомы, а только рибонуклеопротеидные комплексы, которые Р. Робертсон назвал рибосомами. Отечественный биохимик А.С. Спирин в 1963 г. выделил две рибосомальные субъединицы и установил их строение. Обнаружение в клетках полисомы - структуры, состоящей из 5-70 рибосом, позволило Дж. Уотсону высказать предположение, что синтез белка протекает одновременно на множестве рибосом, которые связаны с иРНК. В ходе дальнейших экспериментов был установлен весь механизм трансляции.

Генетическая информация о структуре белка хранится в виде последовательности триплетов ДНК. При этом лишь одна из цепей ДНК служит матрицей для транскрипции.

Биосинтез белков в клетках представляет собой последовательность реакций матричного типа, в ходе которых последовательная передача наследственной информации с одного типа молекул на другой приводит к образованию полипептидов с генетически обусловленной структурой.

Биосинтез белков представляет собой начальный этап реализации, или экспрессии генетической информации. К главным матричным процессам, обеспечивающим биосинтез белков, относятся транскрипция ДНК и трансляция мРНК. Транскрипция ДНК заключается в переписывании информации с ДНК на мРНК (матричную, или информационную РНК). Трансляция мРНК заключается в переносе информации с мРНК на полипептид.

Копирование мРНКначинается с прикрепления РНК-полимеразы к участку ДНК, который называется промотором. Однако, учитывая сведения о возможности альтернативного сплайсинга, возможны случаи, когда гены, даже, расположенные рядом, будут транскрибироваться с разных цепей. Таким образом, для транскрипции могут использоваться обе цепи ДНК. При транскрипции комплементарных цепей ДНК используются разные РНК-полимеразы, а направление их движения по цепи определяется последовательностью промотора.

Так как цепи ДНК инвертированы относительно друг друга, а синтез мРНК, также, как синтез ДНК идет только в направлении от 5ꞌ к 3ꞌ концу, то и транскрипции на ДНК идут в противоположных направлениях.

Цепь ДНК, которая содержит те же последовательности, что и мРНК, называется кодирующей , а цепь, обеспечивающая синтез мРНК (на основе комплементарного спаривания) – антикодирующей . Антикодирующая цепь также называетсятранскрибируемой.

Кроме мРНК в клетке образуются и другие продукты транскрипции ДНК. К ним относятся молекулы рРНК и тРНК, которые также являются участниками синтеза полипептидов. Все эти РНК называются ядерными.

Если рассматривать процентное содержание этих трех видов РНК в клетке, то на долю зрелой мРНК приходится около 5 % от общего содержания РНК, на долю тРНК – около 10 %, а большая часть – до 85 % приходится на рРНК.

Все РНК транскрибируются с ДНК из рибонуклеотидтрифосфатов с освобождением пирофосфата при участии РНК-полимераз. У прокариот присутствует только один вид РНК-полимеразы, которая обеспечивает синтез мРНК, рРНК и тРНК.

В клетках эукариот присутствует три вида РНК- полимераз (I, II, III). Каждая из этих РНК-полимераз, прикрепляясь к промотору на ДНК, обеспечивает транскрипцию разных последовательностей ДНК. РНК-полимераза I синтезирует крупные рРНК (основные молекулы РНК больших и малых субъединиц рибосом). РНК-полимераза II синтезирует все мРНК и часть малых рРНК, РНК-полимераза III синтезирует тРНК и РНК 5s –субъединиц рибосом.

Для связывания РНК-полимераз с промотором необходимы особые белки, выполняющие функцию факторов инициации транскрипции (TF I, TF II, TF III для соответствующих полимераз).

С учетом этих позиций, основные этапы биосинтеза белков состоят в следующем:

1 этап. Транскрипция ДНК . На транскрибируемой цепи ДНК с помощью ДНК-зависимой РНК-полимеразы достраивается комплементарная цепь мРНК. Молекула мРНК является точной копией нетранскрибируемой цепи ДНК с той разницей, что вместо дезоксирибонуклеотидов в ее состав входят рибонуклеотиды, в состав которых вместо тимина входит урацил.

2 этап. Процессинг (созревание) мРНК . Синтезированная молекула мРНК (первичный транскрипт) подвергается дополнительным превращениям. В большинстве случаев исходная молекула мРНК разрезается на отдельные фрагменты. Одни фрагменты – интроны – расщепляются до нуклеотидов, а другие – экзоны – сшиваются в зрелую мРНК. Все стадии процессинга мРНК происходят в РНП-частицах (рибонуклеопротеидных комплексах).

По мере синтеза про-мРНК, она тут же образует комплексы с ядерными белками – информоферами и образует ядерные и цитоплазматические комплексы (мРНК плюс информоферы) - информосомы. Таким образом, мРНК не бывает свободной от белков. На всем пути следования до завершения трансляции мРНК защищена от нуклеаз. Кроме того, белки придают ей необходимую конформацию.

3 этап. Трансляция мРНК . Полученная при транскрипции молекула мРНК служит матрицей для синтеза полипептида на рибосомах. Триплеты мРНК, кодирующие определенную аминокислоту, называются кодоны . В трансляции принимают участие молекулы тРНК. Каждая молекула тРНК содержит антикодон – распознающий триплет, в котором последовательность нуклеотидов комплементарна по отношению к определенному кодону мРНК. Каждая молекула тРНК способна переносить строго определенную аминокислоту.

Молекула тРНК по общей конформации напоминает клеверный лист на черешке. «Вершина листа» несет антикодон. Существует 61 тип тРНК с разными антикодонами. К «черешку листа» присоединяется аминокислота (существует 20 аминокислот, участвующих в синтезе полипептида на рибосомах). Каждой молекуле тРНК с определенным антикодоном соответствует строго определенная аминокислота. В то же время, определенной аминокислоте обычно соответствует несколько типов тРНК с разными антикодонами. Аминокислота ковалентно присоединяется к тРНК с помощью ферментов – аминоацил-тРНК-синтетаз. Эта реакция называется аминоацилированием тРНК. Соединение тРНК с аминокислотой называется аминоацил–тРНК.

Трансляция (как и все матричные процессы) включает три стадии: инициацию (начало), элонгацию (продолжение) и терминацию (окончание).

Инициация. Сущность инициации заключается в образовании пептидной связи между двумя первыми аминокислотами полипептида.

Первоначально образуется инициирующий комплекс, в состав которого входят: малая субъединица рибосомы, специфические белки (факторы инициации) и специальная инициаторная метиониновая тРНК с аминокислотой метионином – Мет–тРНКМет. Инициирующий комплекс узнает начало мРНК, присоединяется к ней и скользит до точки инициации (начала) биосинтеза белка: в большинстве случаев это стартовый кодон АУГ . Между стартовым кодоном мРНК и антикодоном метиониновой тРНК происходит кодонзависимое связывание с образованием водородных связей. Затем происходит присоединение большой субъединицы рибосомы.

При объединении субъединиц образуется целостная рибосома, которая несет два активных центра (сайта): А–участок (аминоацильный, который служит для присоединения аминоацил-тРНК) и Р–участок (пептидилтрансферазный, который служит для образования пептидной связи между аминокислотами). Первоначально Мет–тРНКМет находится на А–участке, но затем перемещается на Р–участок. На освободившийся А–участок поступает аминоацил-тРНК с антикодоном, который комплементарен кодону мРНК, следующему за кодоном АУГ. Например, это Гли–тРНКГли с антикодоном ЦЦГ, который комплементарен кодону ГГЦ. В результате кодонзависимого связывания между кодоном мРНК и антикодоном аминоацил-тРНК образуются водородные связи. Таким образом, на рибосоме рядом оказываются две аминокислоты, между которыми образуется пептидная связь. Ковалентная связь между первой аминокислотой (метионином) и её тРНК разрывается.

После образования пептидной связи между двумя первыми аминокислотами рибосома сдвигается на один триплет. В результате происходит транслокация (перемещение) инициаторной метиониновой тРНКМет за пределы рибосомы. Водородная связь между стартовым кодоном и антикодоном инициаторной тРНК разрывается. В результате свободная тРНКМет отщепляется и уходит на поиск своей аминокислоты.

При этом, вторая тРНК вместе с аминокислотой (Гли–тРНКГли) в результате транслокации оказывается на Р–участке, а А–участок освобождается.

Элонгация. Сущность элонгации заключается в присоединении последующих аминокислот, то есть в наращивании полипептидной цепи. Рабочий цикл рибосомы в процессе элонгации состоит из трех шагов: кодонзависимого связывания мРНК и аминоацил-тРНК на А–участке, образования пептидной связи между аминокислотой и растущей полипептидной цепью и транслокации с освобождением А–участка.

На освободившийся А–участок поступает аминоацил-тРНК с антикодоном, соответствующим следующему кодону мРНК (например, это Тир–тРНКТир с антикодоном АУА, который комплементарен кодону УАУ).

На рибосоме рядом оказываются две аминокислоты, между которыми образуется пептидная связь. Связь между предыдущей аминокислотой и её тРНК (в нашем примере между глицином и тРНКГли) разрывается.

Затем рибосома смещается еще на один триплет, и в результате транслокации тРНК, которая была на Р–участке (в нашем примере тРНКГли), оказывается за пределами рибосомы и отщепляется от мРНК. А–участок освобождается, и рабочий цикл рибосомы начинается сначала.

Терминация. Заключается в окончании синтеза полипептидной цепи.
В конце концов, рибосома достигает такого кодона мРНК, которому не соответствует ни одна тРНК (и ни одна аминокислота). Существует три таких нонсенс–кодона: УАА («охра»), УАГ («янтарь»), УГА («опал»). На этих кодонах мРНК рабочий цикл рибосомы прерывается, и наращивание полипептида прекращается. Рибосома под воздействием определенных белков вновь разделяется на субъединицы.

Энергетика биосинтеза белков. Биосинтез белков – очень энергоемкий процесс. При аминоацилировании тРНК затрачивается энергия одной связи молекулы АТФ, при кодонзависимом связывании аминоацил-тРНК – энергия одной связи молекулы ГТФ, при перемещении рибосомы на один триплет – энергия одной связи еще одной молекулы ГТФ. В итоге на присоединение аминокислоты к полипептидной цепи затрачивается около 90 кДж/моль. При гидролизе же пептидной связи высвобождается лишь 2 кДж/моль. Таким образом, при биосинтезе большая часть энергии безвозвратно теряется (рассеивается в виде тепла).