Сколько у нас генов? Геномы Точная цифра генов у человека последние данные.

Геном рыбы фугу примерно в восемь раз меньше, чем геном человека, и в 330 раз меньше, чем геном двоякодышащей рыбы протоптер. Какие« призраки» живут на «кладбищах геномов», и сколько мусора в нашей с вами ДНК?

Известный молекулярный биолог Дэвид Пенни из Центра молекулярной экологии и эволюции Аллена Вилсона в новозеландском Университете Массей как-то сказал: «Я бы весьма гордился работой в группе, которая разработала геном кишечной палочки. Однако я бы никогда не признался, что участвовал в проектировании генома человека. Ни в одном университете этот проект не смогли бы настолько испортить». Тема о количестве мусора в нашей ДНК — одна из самых «горячих» тем в научном сообществе. Вокруг этого вопроса среди ученых разгораются настоящие словесные баталии.


Репликация (от лат. replicatio — возобновление) — процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты на матрице родительской. При следующем за этим делении каждая из дочерних клеток получает по одной копии молекулы ДНК, идентичной ДНК исходной материнской клетки. Репликацию ДНК осуществляет реплисома — сложный ферментный комплекс, состоящий из 15−20 различных белков.

Немного молекулярной генетики

Напомним, что в основе передачи наследственной информации лежит двухцепочечная молекула ДНК. Она представляет собой полимер из четырех типов мономеров (нуклеотидов): аденина (A), тимина (T), цитозина (С) и гуанина (G) — и уложена в хромосомы. У человека 23 пары расположенных в ядре хромосом (22 пары неполовых и одна пара половых). Они и составляют основу нашего генома (еще 37 генов содержат кольцевые ДНК митохондрий). Если бы мы взяли одну клетку человека, сшили весь диплоидный (парный) набор хромосом вместе и вытянули в нить, то получили бы молекулу длиной в два метра, состоящую из шести миллиардов пар оснований (нуклеотидов). Три миллиарда от папы и три — от мамы.


Плодовая муха дрозофила Drosophila melanogaster. Геном модельной мухи. Геном: 120 млн пар оснований. Генов: 13 500.

Наиболее изученный тип функциональных последовательностей ДНК — гены, кодирующие белки. С таких генов считывается молекула РНК, которая затем играет роль матрицы для синтеза белков и определяет их аминокислотную последовательность. Кодирующая часть молекулы РНК может быть разделена на тройки нуклеотидов (кодоны), которые либо соответствуют некоторой аминокислоте, либо определяют место окончания синтеза белка (стоп-кодоны). Правило соответствия кодонов аминокислотам называется генетическим кодом. Например, кодон GCC кодирует аминокислоту аланин.


Частично синтетическая бактерия Mycoplasma laboratorium. Синтетический геном, в котором закодированы имена синтезировавших его ученых. Геном: 580 000 пар оснований. Генов: 381.

Померимся генами?

Когда-то думали, что у столь сложного организма, как человек, должно быть очень много генов. Когда проект «Геном человека» подходил к завершению, ученые даже устроили тотализатор: сколько генов будет обнаружено? Каково же было их удивление, когда оказалось, что количество генов у человека и маленького круглого червя Caenorhabditis elegans примерно одинаковое. У червяка около 20 000 генов, а у нас — 20−25 тысяч. Для «венца творения» факт довольно обидный, особенно если учесть, что существует много организмов как с бОльшим по размеру геномом (геном двоякодышащей рыбы протоптер, Protopterus aethiopicus, в 40 раз больше человеческого), так и с бОльшим количеством генов (у риса — 32−50 тысяч генов).


Свободноживущая нематода Caenorhabditis elegans. Маленький модельный геном животного. Геном: 100 млн пар оснований. Генов: ~20 000.

Но на самом деле у человека менее 2% генома кодируют какие-либо белки. Для чего же нужны остальные 98%? Может, там скрывается секрет нашей сложности? Оказалось, что существуют важные некодирующие участки ДНК. Например, это участки промоторов — последовательностей нуклеотидов, на которые садится фермент РНК-полимераза и откуда начинается синтез молекулы РНК. Это участки связывания транскрипционных факторов — белков, регулирующих работу генов. Это теломеры, защищающие концы хромосом, и центромеры, необходимые для правильного расхождения хромосом по разным полюсам клеток при делении. Известны некоторые регуляторные молекулы РНК (например, микроРНК, препятствующие синтезу белков соответствующих генов на матричной РНК — копии гена-исходника), а также молекулы РНК, входящие в состав важных ферментативных комплексов — например, рибосом, которые собирают из отдельных аминокислот белки, передвигаясь по матричной РНК. Есть и другие примеры важных некодирующих участков ДНК.


Резуховидка Таля Arabidopsis thaliana. Маленький модельный растительный геном. Геном: 119 млн пар оснований. Генов: ~25 000.

Тем не менее бОльшая часть нашего генома напоминает пустыню: повторяющиеся последовательности, останки «мертвых» вирусов, которые когда-то давно встраивались в геномы наших предков; так называемые эгоистичные мобильные элементы — последовательности ДНК, способные перескакивать из одного участка генома в другой; различные псевдогены — нуклеотидные последовательности, утратившие способность кодировать белки в результате мутаций, но все еще сохранившие некоторые признаки генов. Это далеко не полный список «призраков», обитающих на «кладбище генома».

Вдвое умнее мух

Идея тотализатора по поводу числа человеческих генов пришла в голову доктору Эвану Бирни в баре при лаборатории в Колд-Спринг-Харбор незадолго до завершения проекта «Геном человека». По мере приближения к финалу, с 2000 по 2002 год, ставки выросли с 1 доллара до 20. В результате банк разделили «на троих»: Пол Дир из Британского совета по медицинским исследованиям, который еще в 2000 году поставил на дату своего рождения — 27.04.1962 — 27 462, Ли Роуэн из Института системной биологии в Сиэтле — в 2001 году она поставила на число 25 947, и Оливер Джейлон из французской компании Genoscope (26 500). Когда главного победителя — доктора Дира — спросили, как ему удалось еще три года назад, когда все думали, что генов у человека не меньше 50 000, угадать число с такой точностью, он ответил: «Дело было в баре, глубокой ночью. Наблюдая за поведением пьющих людей, я подумал, что оно мало отличается от поведения мух-дрозофил, у которых 13500 генов, а потому мне показалось, что удвоенного числа мушиных генов людям вполне достаточно».

Минимальная мышь

Существует точка зрения, что бОльшая часть генома человека нефункциональна. В 2004 году журнал Nature опубликовал статью, описывавшую мышей, из генома которых были вырезаны значительные фрагменты некодирующей ДНК размером в 0,8 и даже 1,5 млн нуклеотидов. Было показано, что эти мыши не отличаются от обычных строением тела, развитием, продолжительностью жизни или способностью оставлять потомство. Разумеется, какие-то отличия могли остаться незамеченными, но в целом это был серьезный аргумент в пользу существования «мусорной ДНК», от которой можно избавиться без особых последствий. Конечно, было бы интересно вырезать не пару миллионов нуклеотидов, а миллиард, оставив только предсказанные последовательности генов и известные функциональные элементы. Удастся ли вывести подобную «минимальную мышь», и сможет ли она нормально существовать? Может ли человек обойтись геномом длиной лишь в полметра? Возможно, когда-нибудь мы об этом узнаем. Тем временем еще один важный аргумент в пользу существования мусорной ДНК — наличие достаточно близких организмов с очень разными размерами геномов. Геном рыбы фугу примерно в восемь раз меньше, чем геном человека (хотя генов в нем примерно столько же), и в 330 раз меньше, чем геном уже упомянутой рыбы протоптер. Если бы каждый нуклеотид в геноме был функционален, то непонятно, зачем луку геном в пять раз больший, чем у нас?


На колоссальные различия в размерах геномов сходных организмов обратил внимание эволюционный биолог Сусуму Оно. Считается, что именно Оно ввел термин «мусорная ДНК» (junk DNA). Еще в 1972 году, задолго до того, как был прочитан геном человека, Оно высказал правдоподобные представления как о количестве генов в геноме человека, так и о количестве «мусора» в нем. В своей статье «Столько мусорной ДНК в нашем геноме» он отмечает, что в геноме человека должно быть около 30000 генов. Это число, на тот момент совсем не очевидное, оказалось удивительно близко к реальному, которое узнали десятки лет спустя. Кроме того, Оно приводит оценку функциональной доли генома (6%), объявляя более 90% генома человека мусором.


Мимивирус Acanthamoeba polyphaga mimivirus. Самый большой известный геном вируса. Геном: 1 181 404 пар оснований. Генов: 979.

Находка или мусор?

Вызов представлению о существовании мусорной ДНК бросил проект ENCODE — The Encyclopedia of DNA Elements, «Энциклопедия элементов ДНК» (первые его результаты опубликованы в журнале Nature в 2012 году). Получив многочисленные экспериментальные данные о том, какие части генома человека взаимодействуют с различными белками, участвуют в транскрипции — синтезе РНК-копий генов для последующей трансляции (синтеза белка из аминокислот на матрице информационной РНК) — или других биохимических процессах, авторы пришли к выводу, что более 80% генома человека так или иначе функциональны. Разумеется, данный тезис вызвал бурное обсуждение в научном сообществе.


Двоякодышащая рыба протоптер Protopterus aethiopicus. Самый большой известный геном. Геном: 133 млрд пар оснований. Генов: много.

Одна из наиболее ироничных статей, опубликованная Дэном Грауром, специалистом по молекулярной эволюционной биоинформатике, профессором Хьюстонского университета, и его коллегами в 2013 году в журнале Genome biology and evolution, называется так: «О бессмертии телевизоров: «функция» в геноме человека по лишенному эволюции Евангелию от ENCODE». Ее авторы отмечают, что отдельные члены консорциума ENCODE расходятся в том, какая часть генома функциональна. Так, один из них вскоре уточнил в журнале Genomicron, что речь идет не о 80% функциональных последовательностей в геноме, а о 40%, а другой (в статье в Scientific American) и вовсе снизил показатель до 20%, но при этом продолжал настаивать, что термин «мусорная ДНК» нужно устранить из лексикона.


Вирус иммунодефицита человека (ВИЧ). Быстро меняющийся геном вируса иммунодефицита человека. Геном: 9749 пар оснований (но уже мутировал). Генов: 9, но они кодируют 18 белков.

По мнению авторов статьи «О бессмертии телевизоров», члены консорциума ENCODE слишком вольно интерпретируют термин «функция». Например, существуют белки, которые называют гистонами. Они могут связывать молекулу ДНК и помогают ей компактно укладываться. Гистоны могут подвергаться определенным химическим модификациям. Согласно ENCODE, предположительная функция одной из таких модификаций гистонов — «предпочтение находиться в 5"-конце генов» (5"-конец — это конец гена, от которого движутся ферменты ДНК- и РНК-полимеразы при копировании ДНК или при транскрипции). «Примерно так же можно сказать, что функция Белого дома — занимать площадь земли по адресу 1600, Пенсильвания-авеню, Вашингтон, округ Колумбия», — отмечают оппоненты.

Каша ехала на мотоцикле

Иногда в СМИ можно услышать некорректную фразу «генетический код мутировал». Но мутации происходят не в коде, а в молекуле ДНК (в геноме). В результате меняются нуклеотидные последовательности. Это можно сравнить с заменой буквы в слове. Например, фраза «Маша ехала на мотоцикле» превращается во фразу «Саша ехала на мотоцикле», если одна буква М «мутировала» в букву С. Изменение генетического кода намного серьезней — это как изменение алфавита. Представим, что во всем тексте буква М внезапно превратилась в букву К. Теперь у нас «Каша ехала на котоцикле». Понятно, что такие изменения приводят к значительным последствиям и поэтому в природе происходят крайне редко. Но происходят! Например, у некоторых инфузорий один из стоп-кодонов может кодировать аминокислоту глутамин. Но это скорее исключение, чем правило. У большинства организмов один и тот же генетический код: например, у человека, у червяка или огурца. А вот геномы у этих организмов различаются очень сильно. Тот же алфавит, но другой текст.

Возникает проблема и с приписыванием функции участкам ДНК. Предположим, что к определенному участку ДНК способен прикрепляться важный для функционирования клетки белок, и поэтому ENCODE приписывает этому участку «функцию». Например, некоторый транскрипционный фактор — белок, инициирующий синтез информационной (матричной) РНК — связывается со следующей последовательностью нуклеотидов: TATAAA. Рассмотрим две идентичные последовательности TATAAA в разных частях генома. После того как транскрипционный фактор связывается с первой последовательностью, начинается синтез молекулы РНК, служащей матрицей для синтеза другого важного белка. Мутации (замены любого из нуклеотидов) в этой последовательности приведут к тому, что РНК будет считываться плохо, белок не будет синтезирован, и это, скорее всего, негативно скажется на выживании организма. Поэтому правильная последовательность TATAAA будет поддерживаться в данном месте генома с помощью естественного отбора, и в этом случае уместно говорить о наличии у нее функции.


Рыба фугу Fugu rubripes. Самый маленький известный геном позвоночного. Геном: 390 млн пар оснований. Генов: 20−28 тысяч.

Другая последовательность TATAAA возникла в геноме по случайным причинам. Поскольку она идентична первой, с ней тоже связывается транскрипционный фактор. Но никакого гена рядом нет, поэтому связывание ни к чему не приводит. Если в этом участке возникнет мутация, ничего не изменится, организм не пострадает. В данном случае говорить о функции второго участка TATAAA нет смысла. Впрочем, может оказаться, что наличие в геноме большого количества последовательностей TATAAA вдали от генов нужно просто для того, чтобы связывать транскрипционный фактор и уменьшать его эффективную концентрацию. В таком случае отбор будет регулировать число таких последовательностей в геноме.


Лук репчатый Allium cepa. Один из самых больших растительных геномов. Геном: 16 млрд пар оснований. Генов: неизвестно.

Чтобы доказать, что некоторый участок ДНК функционален, недостаточно показать, что в этом участке происходит некий биологический процесс (например, связывание ДНК). Члены консорциума ENCODE пишут, что функцией обладают участки ДНК, которые вовлечены в транскрипцию. «Но почему нужно акцентировать внимание на том, что 74,7% генома транскрибируется, в то время как можно сказать, что 100% генома принимает участие в воспроизводимом биохимическом процессе — репликации!», — снова шутит Граур.


Антарктические бескрылые комары-звонцы Belgica antarctica. Самый маленький геном членистоногих. Геном: 99 млн пар оснований. Генов: ~14 000.

Хорошим критерием функциональности участка ДНК является то, что мутации в нем достаточно вредны и значительные изменения этого участка не наблюдаются из поколения в поколение. Как определить такие участки? Здесь на помощь и приходит биоинформатика, современная наука на стыке биологии и математики об анализе последовательностей генов и белков. Мы можем взять геномы человека и мыши и найти в них все похожие участки ДНК. Окажется, что у этих двух видов какие-то участки последовательностей нуклеотидов очень похожи. Например, гены, необходимые для синтеза рибосомальных белков, довольно консервативны, то есть мутации в них достаточно вредны, чтобы носители новых мутаций вымирали, не оставляя потомства. Про такие гены говорят, что они находятся под отрицательным отбором, очищающим от вредных мутаций. Другие участки геномов будут иметь значительные расхождения между видами, что указывает на то, что мутации в этих участках, скорее всего, безвредны, а значит, их функциональная роль невелика или не определяется конкретной последовательностью нуклеотидов. В ряде работ оценили долю участков ДНК человека, находящихся под давлением отрицательного отбора. Оказалось, что к ним относятся только около 6,5−10% генома, причем некодирующие участки, в отличие от кодирующих, гораздо меньше подвержены отрицательному отбору. Получается, что с точки зрения эволюционных критериев функциональны менее 10% генома человека. Обратите внимание, как близок к этой оценке был Оно в 1972 году!


Бактерия Hodgkinia cicadicola. Самый маленький известный геном бактерии. Бактерия-симбионт с нестандартным генетическим кодом. Геном: 144 000 пар оснований. Генов: 189.

Мусорная крепость

Но неужели остальные 90% генома человека — мусор, от которого лучше избавиться? Не совсем так. Есть соображения, что большой размер генома может быть полезен сам по себе. У бактерий репликация генома служит серьезным ограничивающим фактором, требующим значительных затрат энергии. Поэтому их геномы, как правило, маленькие, а от всего лишнего они избавляются. У крупных организмов, как правило, репликация ДНК делящихся клеток вносит не столь большой вклад в общее количество энергозатрат организма на фоне расходов на работу мозга, мышц, органов выделения, поддержания температуры тела и т. д. В то же время большой геном может быть важным источником генетического разнообразия, увеличивая шансы на появление новых функциональных участков из нефункциональных за счет мутаций, потенциально полезных в процессе эволюции. Мобильные элементы могут переносить регуляторные элементы, создавая генетическое разнообразие в регуляции работы генов. То есть организмы с крупными геномами теоретически могут быстрее адаптироваться к условиям среды, расплачиваясь сравнительно небольшими дополнительными затратами на репликацию более крупного генома. Подобный эффект мы не обнаружим у отдельного организма, но он может играть важную роль на уровне популяции.


Человек разумный Homo sapiens. Геном предположительно на 90% состоит из мусора. Геном: 3 млрд пар оснований. Генов: 20−25 тысяч.

Наличие крупного генома может также уменьшать вероятность того, что какой-нибудь вирус встроится в функциональный ген (что может привести к поломке гена и в ряде случаев к раку). Иными словами, не исключено, что естественный отбор может действовать не только на поддержание конкретных последовательностей в геноме, но на сохранение определенных размеров генома, нуклеотидного состава в некоторых его участках и т. д.


Впрочем, хотя идея, что только 80% или даже 20% генома человека функциональны — спорна, это вовсе не значит, что критике подлежит весь проект ENCODE. В его рамках получено огромное количество данных о том, как разные белки связываются с ДНК, информации о регуляции генов и т. д. Эти данные представляют большой интерес для специалистов. Но едва ли в ближайшее время удастся избавиться от «мусора» в геноме — как от концепции, так и от самих ненужных последовательностей.

Сравнение десятков тысяч человеческих геномов показало, что абсолютно необходимых генов насчитывается 3230.

В биологии есть понятие минимального генома - минимального набора генов, без которых организм не выживет. Конечно, к этому понятию есть масса вопросов. Например, о каком именно организме идёт речь? Можно взять одноклеточную бактерию, а можно очень и очень многоклеточного человека – по образу жизни они настолько разные, что и набор необходимых генов у них, очевидно, тоже будет разным.

Х-хромосома человека под электронным микроскопом. (Фото Dr. Gopal Murti / Visuals Unlimited / Corbis.)

Человеческие хромосомы в момент клеточного деления. (Фото Lester V. Bergman / CORBIS.)

Опять же, есть пункт «образа жизни». При каких условиях минимальный геном будет достаточен? Та же бактерия может попасть в исключительно благоприятную питательную среду, с идеальными показателями температуры, содержания солей, питательных веществ и т. д., а может, наоборот, перейти на голодный паёк, да ещё испытать на себе повышение солёности или кислотности. И набор необходимых для выживания генов в обоих случаях будет разный. Поэтому при обсуждении минимального генома часто оговариваются, что речь идёт именно о благоприятных условиях жизни.

Вообще мысль о том, что одни гены нужнее других, возникла сравнительно давно: так, ещё в 1996 году Аркадий Мушегян и Евгений Кунин оценили минимальный необходимый геном для бактериальной клетки в 256 генов; в 2004 году другими исследователями был предложен набор в 204 гена. Минимальный геном строили на сравнительном анализе нескольких бактериальных геномов; если же говорить о конкретном организме, то здесь неизбежно приходится вспомнить о бактерии Mycoplasma genitalium , возбудителе заболеваний мочеполовой системы человека – у неё насчитывается всего 517 генов, из которых 482 кодируют белки; жизненно важных из них 382. Геном микоплазмы некоторое время считался самым маленьким, пока не были прочитаны ДНК ещё нескольких микроорганизмов, которые могут существовать только в виде симбионтов внутри клеток хозяина. Пока что чемпионом здесь является бактерия Carsonella , обитающая в клетках листоблошек – её геном содержит всего 182 гена с белковой информацией.

Бактерии бактериями, а если попробовать оценить минимальное число генов у человека? Именно это попыталась сделать исследовательская группа под руководством Дэниэла Макартура (Daniel MacArthur ) из Института Броуда. Отделить важные гены от неважных можно, если предположить, что важные гены будут у разных людей полностью или почти полностью похожи друг на друга. Известно, что в генах могут проскакивать небольшие изменения в последовательностях, по которым одна особь отличается от другой; такие изменения могут вообще не сказываться на работе белка, кодируемого геном, или же сказываться незначительно. Но в случае важных генов их модификации с очень большой вероятностью плохо отразятся на организме, и он вряд ли выживет. Что до неважных генов, то они могут в определённых условиях позволить себе работать не очень хорошо, не подвергая нашу жизнь опасности.

И вот исследователи взялись сравнить между собой гены 60 тысяч человек (стоит уточнить, что сравнивали лишь экзоны, то есть те участки генов, которые несут информацию о последовательности аминокислот в белках). В сумме удалось найти 10 млн различий.

С другой стороны, для каждого гена оценивали теоретическое количество вариантов, которые бы он получил, если бы они возникали в нём случайно и так и оставались. Результат теоретической прикидки сравнивали с тем, что получили в ходе сравнительного анализа реальных последовательностей ДНК (взятых, напомним, у 60 тыс. человек). Как и ожидалось, какие-то гены легко «относились» к вариациям в собственной последовательности, другие же, напротив, старались от них избавиться. Посчитав гены, в которых изменений не было или почти не было, авторы работы получили цифру 3230 – именно столько человеческих генов не могут позволить себе никаких, даже малейших изменений в функционировании. То есть, можно сказать, что эти 3230 и есть жизненно необходимый генетический набор человека. (Напомним, что всего же человеческий геном насчитывает, по разным оценкам, от 20 до 25 тыс. генов.)

Очевидно, модификации в последовательностях таких генов сразу же приводят к каким-то тяжёлым расстройствам либо ещё во время эмбрионального развития, так что человек даже не успевает появиться на свет, либо уже после рождения, в детстве или ранней юности (человек умирает, не успев родить детей). Действительно, про 20% из описанных 3230 известно, что они связаны с разными заболеваниями, однако функцию большинства остальных генов ещё предстоит выяснить. Полученные результаты можно использовать в медицинских целях: очевидно, что поиск генетических причин тех или иных заболеваний лучше всего начинать именно с «минимального генетического набора».

Новые данные пока что существуют в виде препринта, статьи с ними пока нет. Возможно, что к моменту официальной публикации, после всех замечаний рецензентов, число генов как-то изменится. Впрочем, оно может измениться и так: кто знает, вдруг, если мы возьмём ещё больший набор последовательностей для анализа, то список необходимых генов увеличится? Не будем забывать и о том, что наш геном, как и любой другой, состоит не только из кодирующих последовательностей (то есть тех, что непосредственно несут информацию о белках) – в ДНК существует масса регуляторных участков, промоторов, энхансеров, инсуляторов, участков, кодирующих регуляторные РНК, и среди них, безусловно, есть жизненно важные.

Кстати говоря, одна из задач определения минимального генома – создание организма в буквальном смысле с нуля. Иными словами, можем ли мы, зная генетический набор минимального генома, создать живую бактериальную клетку, пусть и требующую для себя исключительно благоприятных условий? С бактериями, между прочим, это уже пытаются проделать; что ж, когда-нибудь дело дойдёт и до человека.

Это было семь лет назад - 26-го июня 2000 года. На совместной пресс-конференции с участием президента США и премьер-министра Великобритании представители двух исследовательских групп - International Human Genome Sequencing Consortium (IHGSC) и Celera Genomics - объявили о том, что работы по расшифровке генома человека, начавшиеся ещё в 70-х годах, успешно завершены, и черновой его вариант составлен. Начался новый эпизод развития человечества - постгеномная эра.

Что может дать нам расшифровка генома, и стоят ли потраченные средства и усилия достигнутого результата? Фрэнсис Коллинз (Francis S. Collins ), руководитель американской программы «Геном человека», в 2000 году дал следующий прогноз развития медицины и биологии в постгеномную эру:

  • 2010 год - генетическое тестирование, профилактические меры, снижающие риск заболеваний, и генная терапия до 25 наследственных заболеваний. Медсёстры начинают выполнять медико-генетические процедуры. Широко доступна преимплантационная диагностика, активно обсуждаются ограничения в применении данного метода. В США приняты законы для предотвращения генетической дискриминации и соблюдения конфиденциальности. Практические приложения геномики доступны не всем, особенно это чувствуется в развивающихся странах.
  • 2020 год - на рынке появляются лекарства от диабета, гипертонии и других заболеваний, разработанные на основе геномной информации. Разрабатывается терапия рака, прицельно направленная на свойства раковых клеток определенных опухолей. Фармакогеномика становится общепринятым подходом для создания многих лекарств. Изменение способа диагностики психических заболеваний, появление новых способов их лечения, изменение отношения общества к таким заболеваниям. Практические приложения геномики все еще доступны далеко не везде.
  • 2030 год - определение последовательности нуклеотидов всего генома отдельного индивида станет обычной процедурой, стоимость которой менее $1000. Каталогизированы гены, участвующие в процессе старения. Проводятся клинические испытания по увеличению максимальной продолжительности жизни человека. Лабораторные эксперименты на человеческих клетках заменены экспериментами на компьютерных моделях. Активизируются массовые движения противников передовых технологий в США и других странах.
  • 2040 год - Все общепринятые меры здравоохранения основаны на геномике. Определяется предрасположенность к большинству заболеваний (ещё до рождения). Доступна эффективная профилактическая медицина с учетом особенностей индивида. Болезни определяются на ранних стадиях путем молекулярного мониторинга.
    Для многих заболеваний доступна генная терапия. Замена лекарств продуктами генов, вырабатываемыми организмом при ответе на терапию. Средняя продолжительность жизни достигнет 90 лет благодаря улучшению социо-экономических условий. Проходят серьезные дебаты о возможности человека контролировать собственную эволюцию.
    Неравенство в мире сохраняется, создавая напряженность на международном уровне.

Как видно из прогноза, геномная информация в недалеком будущем может стать основой лечения и профилактики множества болезней. Без информации о своих генах (а она умещается на стандарный DVD-диск) человек в будущем сможет вылечить разве что насморк у какого-нибудь целителя в джунглях. Это кажется фантастикой? Но когда-то такой же фантастикой была поголовная вакцинация от оспы или интернет (заметьте, в 70-х его еще не существовало)! В будущем генетический код ребенка будут выдавать родителям в роддоме. Теоретически, при наличии такого диска, лечение и предотвращение любых недугов отдельно взятого человека станет сущим пустяком. Профессиональный врач сможет в предельно сжатые сроки поставить диагноз, назначить эффективное лечение, и даже определить вероятность появления разных болезней в будущем. К примеру, современные генетические тесты уже позволяют точно определить степень предрасположенности женщины к раку груди. Почти наверняка, лет через 40–50 ни один уважающий себя врач без генетического кода не захочет «лечить вслепую» - подобно тому, как сегодня хирургия не может обойтись без рентгеновского снимка.

Давайте зададимся вопросом - а достоверно ли сказанное, или, может быть, в действительности всё будет наоборот? Смогут ли люди наконец победить все болезни и придут ли они ко всеобщему счастью? Увы. Начнем с того, что Земля маленькая, и счастья на всех не хватит. По правде сказать, его не хватит даже для половины населения развивающихся стран. «Счастье» предназначено в основном для государств, развитых в плане науки, в частности - наук биологических. Например методика, с помощью которой можно «прочесть» генетический код любого человека, уже давно запатентована. Это отлично отработанная автоматизированная технология - правда, дорогостоящая и очень тонкая. Хочешь, покупай лицензию, а хочешь - придумывай новую методику. Только вот денег на подобную разработку хватит далеко не у всех стран! В итоге ряд государств будет обладать медициной, существенно опережающей уровень остального мира. Естественно, в слаборазвитых странах Красным Крестом будут строиться благотворительные больницы, госпитали и геномные центры. И постепенно это приведет к тому, что генетическая информация пациентов развивающихся стран (которых большинство), сосредоточится у двух-трех держав, финансирующих эту благотворительность. Что можно сделать, имея такую информацию - даже представить трудно. Может, и ничего страшного. Однако возможен и другой исход. Битва за приоритет, сопровождавшая секвенирование генома, наглядно подтверждает важность доступности генетической информации. Давайте кратко вспомним некоторые факты из истории программы «Геном человека».

Противники расшифровки генома считали поставленную задачу нереальной, ведь ДНК человека в десятки тысяч раз длиннее молекул ДНК вирусов или плазмид. Главный аргумент против был: «проект потребует миллиарды долларов, которых недосчитаются другие области науки, поэтому геномный проект затормозит развитие науки в целом. А если все-таки деньги найдутся и геном человека будет расшифрован, то полученная в результате информация не оправдает затрат... » Однако Джеймс Уотсон, один из первооткрывателей структуры ДНК и идеолог программы тотального прочтения генетической информации, остроумно парировал: «лучше не поймать большую рыбу, чем не поймать маленькую » , . Аргумент учёного был услышан - проблему генома вынесли на обсуждение в конгресс США, и в итоге была принята национальная программа «Геном человека».

В американском городе Бетесда, что недалеко от Вашингтона, находится один из координационных центров HUGO (HUman Genome Organization ). Центр координирует научную работу по теме «Геном человека» в шести странах - Германии, Англии, Франции, Японии, Китае и США. В работу включились учёные из многих стран мира, объединенные в три команды: две межгосударственные - американская Human Genome Project и британская из Wellcome Trust Sanger Institute - и частная корпорация из штата Мериленд, включившаяся в игру чуть позже, - Celera Genomics . Кстати, это пожалуй первый случай в биологии, когда на таком высоком уровне частная фирма соревновалась с межгосударственными организациями.

Борьба происходила с использованием колоссальных средств и возможностей. Как отмечали некоторое время назад российские эксперты, Celera стояла на плечах у программы «Геном Человека», то есть использовала то, что уже было сделано в рамках глобального проекта. Действительно, Celera Genomics подключилась к программе не сначала, а когда проект уже шёл полным ходом. Однако специалисты из Celera усовершенствовали алгоритм секвенирования. Кроме того, по их заказу был построен суперкомпьютер, который позволял складывать выявляемые «кирпичики» ДНК в результирующую последовательность быстрее и точнее. Конечно, все это не давало компании Celera безоговорочного преимущества, однако считаться с ней как с полноправным участником гонки заставило.

Появление Celera Genomics резко повысило напряженность - те, кто был занят в государственных программах, почувствовали жёсткую конкуренцию. Кроме того, после создания компании остро встал вопрос об эффективности использования государственных капиталовложений. Во главе Celera стал профессор Крейг Вентер (Craig Venter ) , который имел огромный опыт научной работы по государственной программе «Геном человека». Именно он и заявил, что все публичные программы малоэффективны и что в его фирме геном секвенируют быстрее и дешевле. А тут появился ещё один фактор - спохватились крупные фармацевтические компании. Дело в том, что если вся информация о геноме окажется в открытом доступе, они лишатся интеллектуальной собственности, и нечего будет патентовать. Озабоченные этим, они вложили миллиарды долларов в Celera Genomics (с которой, вероятно, было проще договориться). Это еще более укрепило её позиции. В ответ на это коллективам межгосударственного консорциума срочно пришлось повышать эффективность работ по расшифровке генома. Сначала работа шла несогласованно, но потом были достигнуты определенные формы сосуществования - и гонка начала наращивать темп.

Финал был красивым - конкурирующие организации по взаимной договоренности одновременно объявили о завершении работ по расшифровке генома человека , . Произошло это, как мы уже писали - 26 июня 2000 года. Но разница во времени между Америкой и Англией вывела на первое место США.

Рисунок 1. «Гонка за генóм», в которой участвовали межгосударственная и частная компании, формально завершилась «ничьей»: обе группы исследователей опубликовали свои достижения практически одновременно. Руководитель частной компании Celera Genomics Крейг Вентер опубликовал свою работу в журнале Science в соавторстве с ~270 учёными, работавшими под его началом . Работа, выполненная международным консорциумом по секвенированию человеческого генома (IHGSC), опубликована в журнале Nature , и полный список авторов насчитывает около 2800 человек, работавших в почти трёх десятках центров по всему миру .

Исследования в сумме продлились 15 лет. Создание первого «чернового» варианта генома человека обошлось в 300 миллионов долларов. Однако на все исследования по этой теме, включая сравнительные анализы и решение ряда этических проблем, было выделено в сумме около трех миллиардов долларов. Celera Genomics вложила примерно столько же, правда, она истратила их всего за шесть лет. Цена колоссальная, но эта сумма ничтожна в сравнении с той выгодой, которую получит страна-разработчик от ожидаемой вскоре окончательной победы над десятками серьезных заболеваний. В начале октября 2002 года в интервью «Ассошиэйтед пресс» президент Celera Genomics Крейг Вентер заявил, что одна из его некоммерческих организаций планирует заняться изготовлением компакт-дисков, содержащих максимум информации о ДНК клиента. Предварительная стоимость такого заказа - более 700 тысяч долларов. А одному из первооткрывателей структуры ДНК - доктору Джеймсу Уотсону - уже в этом году были подарены два DVD-диска с его геномом общей стоимостью 1 млн. долларов , - как видим, цены падают. Так, вице-президент фирмы 454 Life Sciences Майкл Эгхолм (Michael Egholm ) сообщил , что в скором времени компания сможет довести цену расшифровки до 100 тыс. долларов.

Широкая известность и масштабное финансирование - палка о двух концах. С одной стороны, за счет неограниченных средств работа продвигается легко и быстро. Но с другой стороны, результат исследований должен получиться таким, каким его заказывают. К началу 2001 года в геноме человека со стопроцентной достоверностью было идентифицировано больее 20 тыс. генов. Эта цифра оказалось в три раза меньше, чем было предсказано всего за два года до этого. Вторая команда исследователей из Национального института геномных исследований США во главе с Френсисом Коллинсом независимым способом получила те же результаты - между 20 и 25 тыс. генов в геноме каждой человеческой клетки. Однако неопределенность в окончательные оценки внесли два других международных совместных научных проекта. Доктор Вильям Хезелтайн (руководитель фирмы Human Genome Studies ) настаивал , что в их банке содержится информация о 140 тыс. генов. И этой информацией он не собирается пока делиться с мировой общественностью. Его фирма вложила деньги в патенты и собирается зарабатывать на полученной информации, поскольку она относится к генам широко распространенных болезней человека. Другая группа заявила о 120 тыс. идентифицированных генов человека и также настаивала, что именно эта цифра отражает общее число генов человека.

Тут необходимо уточнить, что эти исследователи занимались расшифровкой последовательности ДНК не самого генома, а ДНК-копий информационных (называемых также матричными) РНК (иРНК или мРНК). Другими словами, исследовался не весь геном, а только та его часть, что перекодируется клеткой в мРНК и направляет синтез белков. Поскольку один ген может служить матрицей для производства нескольких различных видов мРНК (что определяется многими факторами: тип клетки, стадия развития организма и т. д.), то и суммарное число всех различных последовательностей мРНК (а это именно то, что запатентовала Human Genome Studies ) будет значительно бóльшим. Скорее всего, использовать это число для оценки количества генов в геноме просто некорректно.

Очевидно, что наспех «приватизированная» генетическая информация будет в ближайшие годы тщательно проверяться, пока точное число генов станет, наконец, общепринятым. Но настораживает тот факт, что в процессе «познания» патентуется вообще все, что только можно запатентовать. Тут даже не шкура не убитого медведя, а вообще все, что находилось в берлоге, было поделено! Кстати, на сегодня дебаты сбавили обороты, и геном человека официально насчитывает только 21667 генов (версия NCBI 35 , датированная октябрём 2005 года). Следует отметить, что пока большая часть информации всё-таки остаётся общедоступной. Сейчас существуют базы данных, в которых аккумулирована информация о структуре генома не только человека, но и геномов многих других организмов (например, EnsEMBL). Однако попытки получить исключительные права на использование каких-либо генов или последовательностей в коммерческих целях всегда были, есть сейчас и будут предприниматься впредь.

На сегодня основные цели структурной части программы уже в основном выполнены - геном человека почти полностью прочитан. Первый, «черновой» вариант последовательности, опубликованный в начале 2001 года , был далек от совершенства. В нём отсутствовало приблизительно 30% последовательности генома в целом, из них около 10% последовательности так называемого эухроматина - богатых генами и активно экспрессирующихся участков хромосом. Согласно последним подсчётам, эухроматин составляет примерно 93,5% от всего генома . Оставшиеся же 6,5% приходятся на гетерохроматин - эти участки хромосом бедны генами и содержат большое количество повторов, которые представляют серьезные трудности для ученых, пытающихся прочесть их последовательность . Более того, считается, что ДНК в гетерохроматине находится в неактивном состоянии и не экспрессируется. (Этим можно объяснить такое «невнимание» ученых к оставшимся «малым» процентам человеческого генома.) Но даже имевшиеся на 2001 год «черновые» варианты эухроматиновых последовательностей содержали большое количество разрывов, ошибок и неверно соединенных и ориентированных фрагментов. Нисколько не умаляя значения для науки и ее приложений появление этого «черновика», стоит однако отметить, что использование этой предварительной информации в крупномасштабных экспериментах по анализу генома в целом (например, при исследовании эволюции генов или общей организации генома) выявило множество неточностей и артефактов. Поэтому дальнейшая и не менее кропотливая работа, «последние вершки», была абсолютно необходима.

Рисунок 2. Слева: Автоматизированная линия подготовки образцов ДНК для секвенирования в Центре Геномных исследований института Уайтхеда. Справа: Лаборатория в , заполненная автоматами для высокопроизводительной расшифровки последовательностей ДНК.

Завершение расшифровки заняло еще несколько лет и привело почти что к удвоению стоимости всего проекта. Однако уже в 2004 г. было объявлено, что эухроматин прочитан на 99% с общей точностью одна ошибка на 100 000 пар оснований. Количество разрывов уменьшилось в 400 раз. Аккуратность и полнота прочтения стала достаточной для эффективного поиска генов, отвечающих за то или иное наследственное заболевание (например, диабет или рак груди). Практически это означает, что исследователям больше не надо заниматься трудоемким подтверждением последовательностей генов, с которыми они работают, так как можно полностью положиться на определенную и доступную каждому последовательность всего генома.

Таким образом, изначальный план проекта был значительно перевыполнен. Помогло ли это нам в понимании того, как устроен и работает наш геном? Безусловно. Авторы статьи в Nature , в которой был опубликован «окончательный» (на 2004 год) вариант генома , провели с его использованием несколько анализов, которые были бы абсолютно бессмысленны, имей они на руках только «черновую» последовательность. Оказалось, что более тысячи генов «родились» совсем недавно (по эволюционным меркам, конечно) - в процессе удвоения исходного гена и последующего независимого развития дочернего гена и гена-родителя. А чуть меньше сорока генов недавно «умерли», накопив мутации, сделавшие их совершенно неактивными. Другая статья, вышедшая в том же номере журнала Nature , прямо указывает на недостатки метода, использованного учеными из Celera . Следствием этих недостатков стали пропуски многочисленных повторов в прочитанных последовательностях ДНК и, как результат, недооценённая длина и сложность всего генома. Чтобы не повторять подобных ошибок в будущем, авторы статьи предложили использовать гибридную стратегию - комбинацию высокоэффективного подхода, использовавшегося учеными из Celera , и сравнительно медленного и трудоемкого, но и более надежного метода, применявшегося исследователями из IHGSC.

Куда дальше будет направлено беспрецедентное исследование «Геном человека»? Кое-что об этом можно сказать уже сейчас. Основанный в сентябре 2003 года международный консорциум ENCODE (ENCyclopaedia Of DNA Elements ) поставил своей целью обнаружение и изучение «управляющих элементов» (последовательностей) в геноме человека. Действительно, ведь 3 млрд. пар оснований (а именно такова длина генома человека) содержат всего лишь 22 тыс. генов, разбросанных в этом океане ДНК непонятным для нас образом. Что управляет их экспрессией? Зачем нам такой избыток ДНК? Действительно ли он является балластом, или же все-таки проявляет себя, обладая какими-то неизвестными функциями ?

Для начала, в качестве пилотного проекта, ученые из ENCODE «пристально вгляделись» в последовательность, составляющую 1% от генома человека (30 млн. пар оснований), используя новейшее оборудование для исследований в молекулярной биологии. Результаты были опубликованы в апреле нынешнего года в Nature . Оказалось, что бóльшая часть генома человека (в том числе участки, считавшиеся ранее «молчащими») служит матрицей для производства различных РНК, многие из которых не являются информационными, поскольку не кодируют белков. Многие из этих «некодирующих» РНК перекрываются с «классическими» генами (участками ДНК, кодирующими белки). Неожиданным результатом было и то, как регуляторные участки ДНК были расположены относительно генов, экспрессией которых они управляли. Последовательности многих из этих участков мало изменялись в процессе эволюции, в то время как другие участки, считавшиеся важными для управления клеткой, мутировали и изменялись в процессе эволюции с неожиданно высокой скоростью . Все эти находки поставили большое количество новых вопросов, ответы на которые можно получить лишь в дальнейших исследованиях.

Другая задача, решение которой станет делом недалекого будущего, - определение последовательности оставшихся «малых» процентов генома, составляющих гетерохроматин, т. е. бедных генами и богатых повторами участков ДНК, необходимых для удвоения хромосом в процессе деления клетки. Наличие повторов делает задачу расшифровки этих последовательностей неразрешимой для существующих подходов, и, следовательно, требует изобретения новых методов. Поэтому не удивляйтесь, когда году в 2010 выйдет очередная статья, объявляющая об «окончании» расшифровки генома человека - в ней будет рассказано о том, как был «взломан» гетерохроматин.

Конечно, сейчас в нашем распоряжении имеется лишь некий «усредненный» вариант человеческого генома. Образно говоря - мы сегодня имеем лишь самое общее описание конструкции автомобиля: мотор, ходовая часть, колёса, руль, сиденья, краска, обивка, бензин с маслом и т. д. Ближайшее рассмотрение полученного результата свидетельствует о том, что впереди - годы работ по уточнению наших знаний по каждому конкретному геному. Программа «Геном человека» не прекратила свое существование, она лишь меняет ориентацию: от структурной геномики осуществляется переход к геномике функциональной, предназначенной установить, как управляются и работают гены. Более того, все люди на уровне генов отличаются так же, как одни и те же модели автомобилей отличаются различными вариантами исполнения одних и тех же агрегатов. Не только отдельные основания в последовательностях генов двух разных людей могут отличаться, но и количество копий крупных фрагментов ДНК, порой включающих в себя несколько генов, может сильно варьировать. А это означает, что на передний план выходят работы по детальному сравнению геномов, скажем, представителей различных человеческих популяций, этнических групп, и даже здоровых и больных людей. Современные технологии позволяют быстро и точно проводить такие сравнительные анализы, а ведь еще лет десять назад об этом никто и не мечтал. Изучением структурных вариаций человеческого генома занимается очередное международное научное объединение . В США и Европе значительные средства выделяются на финансирование биоинформатики - молодой науки, возникшей на стыке информатики, математики и биологии, без которой никак не разобраться в безграничном океане информации, накопленном в современной биологии. Биоинформационные методы помогут нам ответить на многие интереснейшие вопросы - «как происходила эволюция человека?», «какие гены определяют те или иные особенности человеческого организма?», «какие гены ответственны за предрасположенность к болезням?» Знаете, как говорят англичане: “This is the end of the beginning ” - «Это конец начала». Вот именно эта фраза точно отражает нынешнюю ситуацию . Начинается самое главное и - я совершенно уверен - самое интересное: накопление результатов, их сравнение и дальнейший анализ.

«...Сегодня мы выпускаем в свет первое издание „Книги жизни“ с нашими инструкциями , - сказал в эфире телеканала «Россия» Фрэнсис Коллинз. - Мы будем обращаться к нему десятки, сотни лет. И уже скоро люди зададутся вопросом, как они могли обходиться без этой информации ».

Другую точку зрения можно проиллюстрировать, процитировав академика Кордюма В. А.:

«...Надежды же на то, что новая информация о функциях генома будет полностью открытой, чисто символические. Можно прогнозировать, что возникнут (на базе уже имеющихся) гигантские центры, которые смогут все данные соединить в одно связное целое, некую электронную версию Человека и реализовывать её практически - в гены, белки, клетки, ткани, органы и что угодно ещё. Но во что? Угодное кому? Для чего? В процессе работ по программе „геном человека“ стремительно совершенствовались методы и аппаратура для определения первичной последовательности ДНК. В крупнейших центрах это превратилось в некое подобие заводской деятельности. Но даже на уровне лабораторных индивидуальных приборов (вернее их комплексов) уже создано столь совершенное оборудование, что оно способно определить за три месяца такую по объему последовательность ДНК, которая равна всему геному человека. Не удивительно, что возникла (и тут же начала стремительно реализоваться) идея определения геномов индивидуальных людей. Безусловно, это очень интересно - сравнить отличия разных индивидуумов на уровне их первоосновы. Польза от такого сравнения тоже несомненная. Можно будет установить, у кого имеются какие нарушения в геноме, прогнозировать их последствия и устранить то, что может привести к болезням. Здоровье будет гарантированным, да и жизнь продлится весьма существенно. Это с одной стороны. С другой же стороны всё совсем не очевидно. Получить и проанализировать всю наследственность индивидуума означает получение полного, исчерпывающего биологического досье на него. Оно, при желании того, кто его знает, позволит столь же исчерпывающе делать с человеком всё что угодно. По уже известной цепочке: клетка - молекулярная машина; человек состоит из клеток; клетка во всех своих проявлениях и во всём диапазоне возможных ответов, записана в геноме; с геномом можно ограниченно уже и сегодня манипулировать, а в обозримом будущем вообще манипулировать практически как угодно... »

Однако, наверное, пугаться таких мрачных прогнозов еще рано (хотя знать о них, безусловно, нужно). Для их осуществления надо полностью перестраивать многие социальные и культурные традиции. Очень хорошо по этому поводу сказал в интервью доктор биологических наук Михаил Гельфанд, и. о. заместителя директора Института проблем передачи информации РАН: «...если у вас есть, предположим, один из пяти генов, предопределяющих развитие шизофрении, то что может случиться, если эта информация - ваш геном - попала в руки вашего потенциального работодателя, который ничего в геномике не понимает! (и как следствие - вас на работу могут не принять, посчитав это рискованным; и это не смотря на то, что шизофрении у вас нет и не будет - прим. автора.) Другой аспект: с появлением индивидуализированной медицины, основанной на геномике, полностью изменится страховая медицина. Ведь одно дело - предусматривать риски неизвестные, а другое дело - совершенно определенные. Если честно, то все западное общество в целом, не только российское, к геномной революции сейчас не готово...» .

Действительно, чтобы разумно пользоваться новой информацией, надо ее понимать. А для того чтобы понять геном - не просто прочитать, этого далеко не достаточно, - нам потребуются десятилетия. Слишком уж сложная картина вырисовывается, и чтобы осознать её, нам надо будет поменять многие стереотипы. Поэтому на самом деле расшифровка генома ещё продолжается и будет продолжаться. И будем ли мы стоять в стороне или станем, наконец, активными участниками этой гонки - зависит от нас.

Литература

  1. Киселёв Л. (2001). Новая биология началась в феврале 2001 года . «Наука и Жизнь» ;
  2. Киселёв Л. (2002). Вторая жизнь генома: от структуры к функции . «Знание–Сила» . 7 ;
  3. Ewan Birney, The ENCODE Project Consortium, John A. Stamatoyannopoulos, Anindya Dutta, Roderic Guigó, et. al.. (2007). Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project . Nature . 447 , 799-816;
  4. Lincoln D. Stein. (2004). Human genome: End of the beginning . Nature . 431 , 915-916;
  5. Гельфанд М. (2007). Постгеномная эра . «Коммерческая биотехнология» .

Сколько же всего генов у человека?

Это наиболее интересный вопрос, ради которого собственно и затевалось полное секвенирование генома человека. После получения основной информации о структуре генома человека в первую очередь были произведены различные анализы по поиску генов и определению их числа. Однако задача оказалась не простой. Это может показаться странным для читателя, но однозначного ответа на поставленный вопрос до сих пор нет.

Сколько же всего генов в ДНК человека? Еще несколько лет назад полагали, что их около 100 тыс., затем решили, что не более 80 тыс. В конце 1998 г. пришли к выводу, что в геноме человека не более 50–60 тыс. генов и на их долю приходится около 3% общей длины ДНК.

Последние подсчеты общего числа генов в геноме человека проводили несколько международных команд ученых. Уже упоминавшаяся компания «Celera» провела собственные исследования, результаты которого изложены в журнале «Science» в 2001 году. По ее оценкам общее число генов в геноме человека составляет от 26383 до 39114. Средний размер гена оценивается равным примерно 3000 п. н. Если принять, что число генов у человека порядка 30 тысяч и на каждый ген приходится примерно 3 тыс. п. н., то нетрудно подсчитать, что в кодировании белков принимает участие менее 1,5% хромосомной ДНК. Таким образом, генетические инструкции по формированию человеческой личности занимают меньше 3 сантиметров на двухметровой молекуле ДНК. Удивляет и малое количество генов, несущих эти инструкции, - их всего в пять раз больше, чем, например, у такого на наш взгляд совершенно примитивного организма, как муха дрозофила.

Вторая команда исследователей из Национального института геномных исследований США во главе с Френсисом Коллинзом, подсчитав число генов у человека независимым способом и на основе своих данных, получила сходный результат - около 32000 генов содержится в геноме каждой клетки человека.

Разнобой в окончательные оценки пока вносят два других коллектива ученых. Доктор Вильям Хезелтайн (руководитель фирмы «Хьюмэн Геном Сайенс») продолжает настаивать, что в их банке содержится приватизированная информация на 120 тыс. генов. Этой информацией он не собирается пока делиться с мировой общественностью. Фирма вложила деньги в патенты и собирается заработать на полученной информации, поскольку она относится к генам широко распространенных болезней человека. Фирма «Инсайт» сообщила о том, что имеет в настоящее время каталог, состоящий из 140 тысяч идентифицированных ей генов человека, и также настаивает на этом количестве общего числа генов у человека.

Очевидно, что наспех приватизированная генетическая информация будет еще тщательно анализироваться и проверяться в ближайшие годы, пока точное число генов станет окончательно «канонизировано». Дело в том, что устройство генов весьма многообразно и до конца еще не поняты все возможные варианты. Вот мы прочитали последовательность нуклеотидов ДНК. Определено, что она способна кодировать белок. Но один ли? Выше уже говорилось о том, как транскрипция и последующие модификации РНК, а затем трансляция и модификации полипептидов, способны обеспечить огромное многообразие белков, кодируемых одним участком ДНК. И понять это исходя только из нуклеотидной последовательности ДНК очень часто просто невозможно. Тем не менее структура генома представляет собой единственную базу для осмысления данных, получаемых такими новыми направлениями, рожденными геномикой, как транскриптомика (исследует совокупность РНК-транскриптов организма), протеомика (исследует совокупность белков организма), метаболомика (исследует обмен веществ - метаболизм - в организме). Эти направления призваны дополнить лежащий в основе структурной геномики метод геномного секвенирования, дать возможность выйти за пределы его разрешающей способности.

Выше уже также говорилось об альтернативном сплайсинге. Сейчас хорошо известно, что за счет этого процесса с одних и тех же генов могут считываться разные белки, которые затем взаимодействуют друг с другом, образуя неповторимую смесь, как из основных цветов в живописи - желтого, красного и голубого можно получить мириады оттенков. Такой сплайсинг характерен не менее чем для половины генов человека. Считается, что в среднем с одного гена человека за счет альтернативного сплайсинга может образовываться три разных пептида. Но некоторые гены имеют до 10 альтернативно сплайсируемых экзонов, что позволяет теоретически получать более 1000 различных вариантов белков всего лишь на одном гене. В реальности число разных белков, кодируемых одним геном, достигает 10. Кроме того, существуют еще и альтернативные промоторы, альтернативные кодоны инициации трансляции, редактирование РНК (превращение Ц в У или А в аналог Г - инозин). Все вышесказанное пока еще невозможно учесть при оценке общего числа генов у человека.

Но и это не все. Кроме генов, кодирующих белки, имеются еще гены, конечным продуктом которых являются РНК. Вспомним об упоминавшихся выше генах-риборегуляторах - они не кодируют белки, но производят функционирующую в клетках РНК. Так что скорее всего окончательная оценка числа генов у человека будет сделана еще нескоро.

На сегодняшний день ученым известны функции всего лишь около восьми-десяти тысяч из них. А детальные сведения о механизмах их регуляции еще более скудны. Тем не менее, приведенные выше данные о строении и функционировании генов человека свидетельствуют о том, что у человека, царствующего в природе, в отличие от других существующих на нашей планете организмов, очень высока сложность протеома - полного набора функциональных белков в клетке, которая обеспечивается не просто за счет крупного размера генома или большого числа генов, а благодаря всевозможным инновациям, связанным с функционированием генов и формированием белков: большее число доменов-модулей, более высокая комбинаторика (перемешивание) этих модулей в белках, активное использование альтернативного сплайсинга и многое другое, о чем мы поговорим дальше.

Особенности

Хромосомы

В геноме присутствует 23 пары хромосом : 22 пары аутосомных хромосом, а также пара половых хромосомы X и Y. У человека мужской пол является гетерогаметным и определяется наличием Y хромосомы. Нормальные диплоидные соматические клетки имеют 46 хромосом.

Гены

Другой подход получения регуляторных последовательностей основан на сравнении генов человека и рыбы фугу . Последовательности генов и регуляторные последовательности у человека и рыбы фугу существенно схожи, однако геном рыбы фугу содержит в 8-раз меньший объём «мусорной ДНК». Такая «компактность» рыбьего генома позволяет значительно легче искать регуляторные последовательности для генов .

Прочие объекты в геноме

Кодирующие белок последовательности (множество последовательностей составляющих экзоны) составляют менее чем 1,5 % генома . Не учитывая известные регуляторные последовательности, в человеческом геноме содержится масса объектов, которые выглядят как нечто важное, но функция которых, если она вообще существует, на текущий момент не выяснена. Фактически эти объекты занимают до 97 % всего объёма человеческого генома. К таким объектам относятся:

  • повторы
    • тандемные повторы
      • сателлитная ДНК
    • диспергированные повторы
      • SINE-ы (short interspersed nuclear element)
      • LINE-ы (long interspersed nuclear element)
  • транспозоны
    • Ретротранспозоны
      • LTR-ы (long terminal repeat)
        • Ty1-copia
        • Ty3-gypsy
      • Не LTR-ы
    • ДНК транспозоны

Представленная классификация не является исчерпывающей. Большая часть объектов вообще не классифицирована мировой научной общественностью на текущий момент.

Соответствующие последовательности, скорее всего, являются эволюционным артефактом. В современной версии генома их функция выключена, и на эти участки генома многие ссылаются как на «мусорную ДНК». Однако существует масса свидетельств, которая говорит о том, что эти объекты обладают некоторой функцией, которая не вполне понятна на текущий момент.

Псевдогены

Вирусы

Около 1 % в геноме человека занимают встроенные гены ретровирусов (эндогенные ретровирусы). Эти гены обычно не приносят пользы хозяину, но существуют и исключения. Так, около 43 млн. лет назад в геном предков обезьян и человека попали ретровирусные гены, служившие для построения оболочки вируса. У человека и обезьян эти гены участвуют в работе плаценты.

Большинство ретровирусов встроились в геном предков человека свыше 25 млн. лет назад. Среди более молодых человеческих эндогенных ретровирусов полезных на настоящий момент не обнаружено , .

См. также

Примечания

Список литературы

  • Тарантул В. З. Геном человека. Энциклопедия, написанная четырьмя буквами. - Языки славянской культуры, 2003. - 396 с. - ISBN 5-94457-108-X .
  • Ридли Мэтт. Геном: автобиография вида в 23 главах. - М.: Эксмо, 2008. - 432 с. - ISBN 5-699-30682-4

Ссылки

  • Всеобщая декларация о геноме человека и правах человека ЮНЕСКО, 1997
  • Lindblad-Toh K, et al. (2005). «Genome sequence, comparative analysis and haplotype structure of the domestic dog.». Nature 438 (7069): 803-19. PMID 16341006 .

Wikimedia Foundation . 2010 .

Смотреть что такое "Геном человека" в других словарях:

    Геном человека это геном биологического вида Homo sapiens . В нормальной ситуации у человека может присутствовать 24 различных хромосомы (22+X+Y): 22 из них не зависят от пола (аутосомные хромосомы), 2 X хромосома и Y хромосома зависят от пола.… … Википедия

    Логотип проекта Проект по расшифровке генома человека (англ. The Human Genome Project, HGP) международный научно исследовательский проект, главной целью которого было опр … Википедия

    Логотип проекта Проект по расшифровке генома человека (англ. The Human Genome Project, HGP) международный научно исследовательский проект, главной целью которого было определить последовательность нуклеотидов, которые составляют ДНК и… … Википедия

    Проект «Геном человека» - * праект «Геном чалавека» * Human Genome Project or HGP многолетний научно исследовательский проект, задачей которого было получение полной генетической информации, записанной в геноме человека, «прочтение» нуклеотидных последовательностей во… … Генетика. Энциклопедический словарь

    проект «Геном Человека» - — Тематики биотехнологии EN Human Genome Project … Справочник технического переводчика

    Проект Геном человека - широкомасштабное международное исследование генома человека, начатое в конце 1980 х г … Словарь по психогенетике

    - (нем. Genom), совокупность генов, характерных для гаплоидного набора хромосом данного вида организмов; основной гаплоидный набор хромосом. Термин предложен Г. Винклером в 1920. В отличие от генотипа, Г. представляет собой характеристику вида, а… … Биологический энциклопедический словарь

    Совокупность генов, содержащихся в гаплоидном (одинарном) наборе хромосом данного организма. Диплоидные организмы содержат 2 генома отцовский и материнский. Термин геном в современной генетике употребляют и по отношению к совокупности генов у… … Большой Энциклопедический словарь

    ГЕНОМ, совокупность генов, содержащихся в гаплоидном (одинарном) наборе хромосом данного организма. Диплоидные организмы содержат 2 генома отцовский и материнский. Термин геном в генетике употребляют и по отношению к совокупности генов у бактерий … Современная энциклопедия

    Геном - ГЕНОМ, совокупность генов, содержащихся в гаплоидном (одинарном) наборе хромосом данного организма. Диплоидные организмы содержат 2 генома отцовский и материнский. Термин “геном” в генетике употребляют и по отношению к совокупности генов у… … Иллюстрированный энциклопедический словарь