Решение генетических задач на дигибридное скрещивание. Задания по генетике на ЕГЭ по биологии

Муниципальное казенное общеобразовательное учреждение лицей №4

г.Россоши Россошанского муниципального района Воронежской области.

Методическая разработка по биологии в помощь учащимся, сдающим ЕГЭ.

«Задачи по генетике » для 11 класса

учитель биологии высшей квалификационной категории

2016

I . Задачи на моногибридное скрещивание (полное и неполное доминирование)

1. У кроликов серая окраска шерсти доминирует над черной. Гомозиготную серую крольчиху скрестили с черным кроликом. Определите фенотипы и генотипы крольчат?
2. У морских свинок черная окраска шерсти доминирует над белой. Скрестили двух гетерозиготных самца и самку. Какими будут гибриды первого поколения? Какой закон проявляется в данном наследовании?
3. При скрещивании двух белых тыкв в первом поколении ¾ растений были белыми, а ¼ - желтыми. Каковы генотипы родителей, если белая окраска доминирует над желтой? 4. Черная корова Ночка принесла красного теленка. У красной коровы Зорьки родился черный теленок. Эти коровы из одного стада, в котором один бык. Каковы генотипы всех животных? Рассмотрите разные варианты. (Ген черной окраски – доминантный. )
5. Сколько карликовых растений гороха можно ожидать при посеве 1200 семян, полученных при самоопылении высоких гетерозиготных растений гороха? (Всхожесть семян равна 80%).

6. Плоды арбуза могут иметь зеленую или полосатую окраску. Все арбузы, полученные от скрещивания растений с зелеными и полосатыми плодами, имели только зеленый цвет корки плода. Какая окраска плодов арбуза может быть в F 2 ?

7.У львиного зева, растения с широкими листьями, при скрещивании между собой всегда дают потомство с такими же листьями, а при скрещивании узколистного растения с широколистным возникают растения с листьями промежуточной ширины. Каким будет потомство от скрещивания двух особей с листьями промежуточной ширины.

II

1. У человека глаукома наследуется как аутосомно-рецессивный признак (а), а синдром Марфана, сопровождающийся аномалией в развитии соединительной ткани, – как аутосомно-доминантный признак (В). Гены находятся в разных парах аутосом. Один из супругов страдает глаукомой и не имел в роду предков с синдромом Марфана, а второй дигетерозиготен по данным признакам. Определите генотипы родителей, возможные генотипы и фенотипы детей, вероятность рождения здорового ребенка. Составьте схему решения задачи. Какой закон наследственности проявляется в данном случае?

2. Скрестили низкорослые (карликовые) растения томата с ребристыми плодами и растения нормальной высоты с гладкими плодами. В потомстве были получены две фенотипические группы растений: низкорослые с гладкими плодами и нормальной высоты с гладкими плодами. При скрещивании растений томата низкорослых с ребристыми плодами с растениями, имеющими нормальную высоту стебля и ребристые плоды, все потомство имело нормальную высоту стебля и ребристые плоды. Составьте схемы скрещиваний. Определите генотипы родителей и потомства растений томата в двух скрещиваниях. Какой закон наследственности проявляется в данном случае?

3. При скрещивании рогатых красных коров с комолыми черными быками родились телята двух фенотипических групп: рогатые черные и комолые черные. При дальнейшем скрещивании этих же рогатых красных коров с другими комолыми черными быками в потомстве были особи комолые красные и комолые черные. Напишите схемы решения задачи. Определите генотипы родителей и потомства в двух скрещиваниях. Какой закон наследственности проявляется в данном случае?

4. Плоды томатов могут иметь красный и желтый цвет, быть голыми и опушенными. Известно, что гены желтой окраски и опушенности являются рецессивными. Из собранного в колхозе урожая помидоров оказалось 36 т красных неопушенных и 12 т красных опушенных. Сколько (примерно) в колхозном урожае может быть желтых пушистых помидоров, если исходный материал был гетерозиготный?

5. При скрещивании пестрой хохлатой (В) курицы с таким же петухом было получено восемь цыплят: четыре цыпленка пестрых хохлатых, два – белых (а) хохлатых и два черных хохлатых. Составьте схему решения задачи. Определите генотипы родителей, потомства, объясните характер наследования признаков и появление особей с пестрой окраской. Какие законы наследственности проявляются в данном случае?

6. У мышей чёрная окраска шерсти доминирует над коричневой (а). Длинный хвост определяется доминантным геном (В) и развивается только в гомозиготном состоянии, у гетерозигот развивыается короткий хвост. Рецессивные гены, определяющие длину хвоста в гомозиготном состоянии вызывают гибель эмбрионов. Гены двух признаков не сцеплены При скрешиваиии самки мыши с черной шерстью и коротким хвостом и самца с коричневой шерстью и коротким хвостом получено следующее потомство: чёрные мыши с длинным хвостом, черные с коротким хвостом, коричневые мыши с длинным хвостом и коричневые с коротким хвостом. Составьте схему решения задачи. Определите генотипы родителей и потомства, соотношение фенотипов и генотипов потомства, вероятность гибели зародышей. Какой закон наследственности проявляется в данном случае? Ответ обоснуйте.
7. Скрещивали растение земляники усатые белоплодные с растениями безусыми красноплодными (В). Все гибриды получились усатые розовоплодные. При анализирующем скрещивании гибридов F 1 в потомстве произошло фенотипическое расщепление. Составьте схему решения задачи. Определите генотипы родительских особей, гибридов первого поколения, а также генотипы и фенотипы потомства при анализирующем скрещивании (F 2). Определите характер наследования признака окраски плода. Какие законы наследственности проявляются в данных случаях?
8.При скрещивании растений флокса с белой окраской цветков и воронковидным венчиком с растением, имеющим кремовые цветки и плоские венчики, получено 78 потомков, среди которых 38 образуют белые цветки с плоскими венчиками, а 40 – кремовые цветки с плоскими венчиками. При скрещивании флоксов с белыми цветками и воронковидными венчиками с растением, имеющим кремовые цветки и плоские венчики, получены флоксы двух фенотипических групп: белые с воронковидными венчиками и белые с плоскими венчиками. Составьте схемы двух скрещиваний. Определите генотипы родителей и потомства в двух скрещиваниях. Какой закон наследственности проявляется в данном случае?

9. Существует два вида наследственной слепоты каждая из которых определяется рецессивными аллеями генов (a или b). Оба аллеля находятся в различных парах гомологичных хромосом. Какова вероятность рождения слепого внука в семье, в котором бабушки по материнской и отцовской линиям дигомозиготны и страдают различными видами слепоты, а оба дедушки хорошо видят (не имеют рецессивных генов). Составьте схему решения задачи. Определите генотипы и фенотипы бабушек и дедушек, их детей и возможных внуков.

III . Задачи на наследование групп крови системы АB0

    У мальчика I группа, у его сестры – IV. Каковы генотипы родителей?

    У отца IV группа крови, у матери – I. Может ли ребенок унаследовать группу крови своей матери?

    В родильном доме перепутали двух детей. Первая пара родителей имеет I и II группы крови, вторая пара – II и IV. Один ребенок имеет II группу, а второй – I группу. Определите родителей обоих детей.

    Можно ли переливать кровь ребёнку от матери, если у неё группа крови АВ, а у отца – 00? Ответ поясните.

5. Группа крови и резус-фактор – аутосомные несцепленные признаки. Группа крови контролируется тремя аллелями одного гена – i 0 , I A , I B . Аллели I A и I B доминантны по отношению к аллелю i 0. Первую группу (0) определяют рецессивные гены i 0 , вторую группу (А) определяет доминантный аллель I A , третью группу (В) определяет доминантный аллель I B, а четвертую (АВ) – два доминантных аллеля I A I B . Положительный резус-фактор R доминирует над отрицательным r. У отца третья группа крови и положительный резус (дигетерозигота), у матери вторая группа и положительный резус (дигомозигота). Определите генотипы родителей. Какую группу крови и резус-фактор могут иметь дети в этой семье, каковы их возможные генотипы и соотношение фенотипов? Состаьте схему решения задачи. Какой закон наследственности проявляется в данном случае?

IV

1. У канареек наличие хохолка – доминантный аутосомный признак (А); сцепленный с полом ген X B определяет зеленую окраску оперения, а X b – коричневую. У птиц гомогаметный пол мужской, а гетерогаметный женский. Скрестили хохлатую зеленую самку с самцом без хохолка и зеленым оперением (гетерозигота). В потомстве оказались птенцы хохлатые зеленые, без хохолка зеленые, хохлатые коричневые и без хохолка коричневые. Составьте схему решения задачи. Определите генотипы родителей и потомства, их пол. Какие законы наследственности проявляются в данном случае?

2. Окраска тела дрозофилы определяется аутосомным геном. Ген окраски глаз находится в Х-хромосоме. Гетерогаметным у дрозофилы является мужской пол. Скрестили самку с серым телом и красными глазами с самцом с чёрным телом и белыми глазами. Всё потомство имело серое тело и красные глаза. Получившихся в F1 cамцов cкрестили с родительской самкой. Составьте схему решения задачи. Определите генотипы родителей и самок F 1, генотипы и фенотипы потмства в F 2 . Какя часть самок от общего числа потомков во втором скрещивании фенотипически сходна с родительской самкой? Укажите их генотипы.

3.У человека ген карих глаз доминирует над голубым цветом глаз (А), а ген цветовой слепоты рецессивный (дальтонизм – d) и сцеплен с Х-хромосомой. Кареглазая женщина с нормальным зрением, отец которой имел голубые глаза и страдал цветовой слепотой, выходит замуж за голубоглазого мужчину с нормальным зрением. Составьте схему решения задачи. Определите генотипы родителей и возможного потомства, вероятность рождения в этой семье детей-дальтоников с карими глазами и их пол. Ответ поясните.

4. У человека наследование альбинизма не сцеплено с полом (А- наличие меланина в клетках кожи, а- альбинизм), а гемофилии - сцеплено с полом (Х н - нормальная свёртываемость крови, X h - гемофилия). Определите генотипы родителей, а также возможные генотипы, пол и фенотипы детей от брака дигетерозиготной по обеим аллелям женщины и мужчины-альбиноса с нормальной свёртываемостью крови. Составьте схему решения задачи. Ответ поясните.

1. При скрещивании растений кукурузы с гладкими окрашенными зернами с растением, дающим морщинистые неокрашенные семена, в первом поколении все растения давали гладкие окрашенные зерна. При анализирующем скрещивании гибридов из F 1 в потомстве было четыре фенотипические группы: 1200 гладких окрашенных, 1215 морщинистых неокрашенных, 309 гладких неокрашенных, 315 морщинистых окрашенных. Составьте схему решения задачи. Определите генотипы родитетелй и потомства в двух скрещиваниях. Объясните формирование четырех фенотипических групп во втором скрещивании.

2. При скрещивании дигетерозиготного растения кукурузы с окрашенным семенем и крахмалистым эндоспермом и растения с неокрашенным семенем и восковидным эндоспермом в потомстве получилось расщепление по фенотипу: 9 растений с окрашенным семенем и крахмалистым эндоспермом; 42 – с окрашенным семенем и восковидным эндоспермом; 44 – с неокрашенным семенем и крахмалистым эндоспермом; 10 – с неокрашенным семенем и восковидным эндоспермом. Составьте схему решения задачи. Определите генотипы исходных особей, генотипы потомства. Объясните формирование четырех фенотипических групп.

3. Дигетерозиготное растение гороха с гладкими семенами и усиками скрестили с растением с морщинистыми семенами без усиков. Известно, что оба доминантных гена (гладкие семена и наличие усиков) локализованы в одной хромосоме, кроссинговера не происходит. Составьте схему решения задачи. Определите генотипы родителей, фенотипы и генотипы потомства, соотношение особей с разными генотипами и фенотипами. Какой закон при этом проявляется?

VI . Задачи на родословные

1. По изображённой на рисунке родословной определите и объясните характер наследования признака, выделенного чёрным цветом (доминантный или рецессивный, сцеплен или не сцеплен с полом. Определите генотипы потомков 1,3,4,5,6,7. Определите вероятность рождения у родителей 1,2 следующего ребёнка с признаком, выделенным на родословной чёрным цветом.

2. По изображённой на рисунке родословной определите и обоснуйте генотипы родителей, потомков, обозначенных на схеме цифрами 1,6,7. Установите вероятность рождения ребёнка с наследуемым признаком у женщины под номером 6, если в семье её супруга этот признак никогда не проявлялся.

    По изображённой на рисунке родословной определите и объясните характер наследования признака, выделенного чёрным цветом. Определите генотипы родителей, потомков1,6 и объясните формирование их генотипов.

    По родословной, представленной на рисунке, определите характер наследования признака (доминантный или рецессивный, сцеплен или не сцеплен с полом), выделенного черным цветом, генотипы родителей и детей в первом поколении. Укажите, кто из них является носителем гена, признак которого выделен черным цветом.

Задачи на взаимодействие генов

1. комплементарность

У попугаев цвет перьев определяется двумя парами генов. Сочетание двух доминантных генов определяет зеленый цвет. Рецессивные по обеим парам генов особи имеют белый цвет. Сочетание доминантного гена А и рецессивного гена b определяет желтый цвет, а сочетание рецессивного гена а с доминантным геном В – голубой цвет.

При скрещивании между собой двух зеленых особей получили попугаев всех цветов. Определите генотипы родителей и потомков.

2. эпистаз

Окрашенность шерсти кроликов (в противоположность альбинизму) определяется доминантным геном. Цвет же окраски контролируется другим геном, расположенным в другой хромосоме, причем серый цвет доминирует над черным (у кроликов-альбиносов гены цвета окраски себя не проявляют).

Какими признаками будут обладать гибридные формы, полученные от скрещивания серого кролика, рожденного от кролика-альбиноса, с альбиносом, несущим ген черной окраски?

3. плейотропия.

Одна из пород кур отличается укороченными ногами. Признак этот доминирующий. Управляющий им ген вызывает одновременно укорочение клюва. При этом у гомозиготных цыплят клюв так мал, что они не в состоянии пробить яичную скорлупу и гибнут, не вылупившись из яйца. В инкубаторе хозяйства, разводящего только коротконогих кур, получено 3000 цыплят. Сколько среди них коротконогих?

4. полимерия

Сын белокожей женщины и чернокожего мужчины женился на белокожей женщине. Может ли быть у этой пары ребёнок темнее отца?

ОТВЕТЫ:

I . Задачи на моногибридное скрещивание (полное и неполное доминирование)

1. А- серый цвет

а- чёрный цветР: АА и аа.

F 1: Аа, все серые.

2. А- чёрный цветковогоа- белый цвет

Р: Аа и Аа.

F 1: АА 2Аа, аа. Закон расщепления.

3. А- белый цвет

а- жёлтый цвет

Оба родителя имеют генотип Аа.

F 1 расщепление по генотипу 1аа 2Аа 1 аа

4.Ночка-Аа, её телёнок- аа. Зорька- аа, её телёнок- Аа, бык- Аа.

5. А- высокие

а-карликовые

F 1 1АА 2Аа 1аа

240 карликовых растений.

6.А- зелёный цвет

а- полосатый цвет

F2 1АА 2Аа 1аа

F 2 - расщепление 3 зелёные:1полосатые

7. А- широкие лисстья

а- узкие листья

Аа- промежуточная ширина листьев

F 1: расщепление по фенотипу:1- широкие листья,2-промежуточнач ширина листа,1- узкие листья.

По генотипу: АА 2Аа аа

II . Задачи на дигибридное скрещивание

1. А – норма, а – глаукома.
B – синдром Марфана, b – норма.
Один из супругов страдает глаукомой и не имел в роду предков с синдромом Марфана: aabb. Второй супруг дигетерозиготен: AaBb.

норма.
синдром

норма
норма

глаукома
синдром

глаукома
норма

Вероятность рождения здорового ребенка (норма/норма) = 1/4 (25%). В данном случае проявляется третий закон Менделя (закон независимого наследования).

а- карликовость

В- гладкие

в-ребристые
первое скрещивание- Р: aabb и AaBB, получили F 1 - aaBb и AaBb
второе- Р: aabb и AAbb, получили F 1 - Aabb.

4.Р-АаВв и аавв.F1: 9 кр.гол.. 3 кр. Оп., 3 ж.гол., 1 ж. оп.4 тонны ж. оп.

5. В данном случае проявляется промежуточное наследование окраски. АА- черные, Аа- пестрые, аа - белые. родители и курица и петух имеют генотипы АаВВ. И гаметы образуют одинаковые: АВ, аВ. при их слиянии происходит образование генотипов -ААВВ -черные хохлатые, АаВВ- пестрые хохлатые, ааВВ - белые хохлатые. соотношение -1/2/1.

    ген цвета:
    А - черный
    а- коричневый
    ген длины хвоста:
    В- длинный
    в- короткий
    вв - леталь
    Вв - укороченный
    Решение:
    1) АаВв х ааВв
    черная, укороченная х коричневой, укороченной
    гаметы - АВ, Ав, аВ, ав аВ ав

АаВВ АаВв ааВВ ааВв АаВв Аавв ааВв аавв
ч. д. ч. у. к. д. к у. ч. у леталь к. у леталь
черных с джлинным хвостом - 1/8
черных с укороченным - 2/8
коричневых с длинным хвостом - 1/8
коричневых с укороченным - 2/
леталь - 2/8. Закон независимого наследования

7. А- усатые

а- безусые

В- красные

Вв- розовые

1) первое скрещивание:

Р ААвв * ааВВ

ус. бел. б/ус. кр.

2) анализирующее скрещивание:

АаВв * аавв

G АВ Ав аВ ав ав

F 2 АаВb - усатые розовоплодные; Aabb - усатые белоплодные;

ааВb - безусые розовоплодные; aabb - безусые белоплодные;

3) характер наследования признака окраски плода - неполное доминирование. В первом скрещивании - закон единообразия гибридов, во втором (анализирующем) - независимого наследования признаков.

8. А - плоские венчики,

а - воронковидные венчики.

В - белые цветы,

b - кремовые цветы

первое скрещивание:

Р ааВв х Аавв

G аВ ав Ав ав

F 1 АаВb аавв

второе скрещивание:

Р ааВВ х Аавв

G аВ Ав ав

F 1 АаВb ааВв
В данном случае проявляется третий закон Меделя – закон независимого наследования.

9. А - норма, а - слепота №1.

В - норма, b - слепота №2.
Бабушка по материнской линии AAbb, бабушка по отцовской- aaBB. Дедушки- AABB.

Вероятность рождения слепого внука 0%

    Задачи на наследование групп крови системы АB0

1. Мальчик-j0j0. Сестра- JАJВ

Р J А j 0 и J А J В

2. Отец - J А J В

Мать-j 0 j 0.

Нет, т.к. у детей может быть либо 2-я либо 3-я группы крови.

3. первая пара родителей:
P: j 0 j 0 x J А j 0 или j 0 j 0 x J A J А
G: j 0 J A , j 0 j0 J A
F: J A j0 (2 гр) , j 0 j 0 (1гр.) или J A j 0 (2 гр)
вторая пара родителей
Р: J A J A x J A J B или J A j 0 x J A J B
G: J A ; J A , J B J A j 0 J A , J B
F: J A J A (2) J A J B (4) J A J A (2) J A J B (4) J A j 0(2) J в j 0(3 гр.)
У первой пары родителей, сын имеет 1 гр. и ген 0 он получил от обоих родителей. Вторая пара- родители мальчика с о 2-ой группой крови.
Эту задачу можно решить устно, потому что ребенок с 1 гр. крови не может родиться у пары, в которой есть человек с 4 группой крови
4. Нельзя, т.к. у детей возможны группы крови: А0(II) или В0 (III), поэтому кровь четвёртой группы, которую имеет мать переливать нельзя.

5. Отец-дигетерозигота I B i 0 Rr, мать-дигомозигота I A I А RR.

IV группа
резус +

IV группа
резус +

II группа
резус +

II группа
резус +

Дети в этой семье могут иметь IV или II группу крови, все резус-положительные. Доля детей с IV группой крови составляет 2/4 (50%). Проявляется закон независимого наследования (третий закон Менделя).

IV . Задачи на сцепленное с полом и аутосомное наследование

1. А – наличие хохолка, а – нет хохолка.
X B – зеленое оперение, X b – коричневое оперение.
А_X B Y-хохлатая зеленая самка
ааX B X b- самец без хохолка с зеленым оперение (гетерозигота)
Среди потомства были птенцы без хохолка- аа. Они получили один ген а от матери, один от отца. Следовательно, у матери должен быть ген а, следовательно, мать Аа.
P АаX В Y x ааX B X b

AaX В X В
самец

aaX В X В
самец

AaX B Y
самка

aaX B Y
самка

AaX В X b
самец

aaX В X b
самец

AaX b Y
самка

aaX b Y
самка

В данном случае проявился закон независимого наследования (третий закон Менделя) и сцепленное с полом наследование.

2. А- серое тело

а- чёрное тело

Х В красные глаза

Х в - белые глаза

Р 1 ААХ В Х В * ааХ в Y
серые тело черное тело
кр.глаза белые гл.

G АХ В аХ в аY
F 1 AaХ B Х b АаХ В Y
Р 2 AАХ B Х В * AaХ В Y

G АХ В АХ В аХ В АY аY

F 2 AАХ B Х В AаХ B Х В AАХ В Y AаХ B Y
F 2 все потомки имеют серое тело и красные глаза.

Соотношение по полу-50% : 50:%

3. А – карие глаза,

а – голубые глаза.
X D – нормальное зрение,

X d – дальтонизм.

А_X D X _ кареглазая женщина с нормальным зрением
ааX d Y- отец женщины, он мог отдать дочери только аX d , следовательно, кареглазая женщина- АаX D X d .
АаX D Y.- муж женщины

Р АаX D X d х ааX D Y

G АХ D АХ d аХ D ах d аХ D аY

F 1 ААХ D Х D АаХ D Х d ааХ D Х D ааХ D Х d ААХ D Y Аа Х d Y ааХ D ХY ааХ d Y

Вероятность рождения ребенка-дальтоника с карими глазами составляет 1/8, (12,5%), это мальчик.

4. А - норма, а - альбинизм.
Х Н - норма, Х h - гемофилия.
Женщина АаХ Н Х h , мужчина ааХ H Y

G АХ H АХ h аХ H аХ h аХ H аY

F1 AaХ H Х H АаХ H Y AaХ H Х h АаХ h Y ааХ H Х H ааХ H Y ааХ H Х h ааX h Y

к.н. к.н. к.н. к.г. г.н. г.н. г.н. г..г.

Расщепление по цвету глаз- 1:1 по свёртываемости крови- все дочери здоровы, мальчики- 1:1.

V. Задачи на сцепленное наследование

1 . А - гладкие зерна,

а - морщинистые зерна.
B - окрашенные зерна,

b - неокрашенные зерна.

Р ААВВ х аавв

Поскольку в первом поколении получилось единообразие (первый закон Менделя), следовательно, скрещивали гомозиготы, в F1 получилась дигетерозигота, несущая доминантные признаки.

Анализирующее скрещивание:

нормальные гаметы
со сцеплением, много

рекомбинантные гаметы
с нарушенным
сцеплением, мало

гладкие
окрашенные,
много (1200)

морщинист.
неокрашен.,
много (1215)

гладкие
неокрашен.,
мало (309)

морщинист.
окрашен.,
мало (315)

Поскольку во втором поколении получилось неравная численность фенотипических групп, следовательно, имело место сцепленное наследование. Те фенотипические группы, которые представлены в большом количестве- не кроссоверы, а группы, представленные в малом количестве – кроссоверы, образованные из рекомбинантных гамет, сцепление в которых было нарушено из-за кроссинговера в мейозе.

2. А- окрашенное семя а- не окрашенное семя В- крахмалистый эндосперм b- восковидный эндосперм Р АаВв х аавв G АВ Ав а В ав F1 9- АаВв- окр. семя, крахм. эндосперм 42- Аавв- окр. семя, воск. эндосперм 44- ааВв- неокрашенное семя, крахмалистый эндосперм 10- аавв- неокрашенное семя восковидный эндосперм Присутствие в потомстве двух групп (42 – с окрашенным восковидным эндоспермом; 44 – с неокрашенным восковидным эндоспермом) примерно в равных долях – результат сцепленного наследования аллелей А и в, а и В между собой. Две другие фенотипические группы образуются в результате кроссинговера.

    А - гладкие семена,

а - морщинистые семена
B - наличие усиков,

b - без усиков

гладкие
семена,
усы

морщинист.
семена,
без усов

Если кроссинговер не происходит, то у дигетерозиготного родителя образуется только два вида гамет (полное сцепление).

  1. А- серое тело
а- чёрное тело В- нормальные крылья в- укороченные крылья Р АаВв x аавв

F 1 АаВв все серые с нормальными крыльями. Закон единообразия)

Р АаВв x АаВв

Т.К. нет ожидаемого Менделевского расщепления, значит, произошёл кроссинговер:

сцеплены

АВ АВ ав ав
F 2 ААВВ АаВв АаВв аавв

У человека темный цвет волос (А) доминирует над светлым цветом (а), карий цвет глаз (В) - над голубым (b). Запишите генотипы родителей, возможные фенотипы и генотипы детей, родившихся от брака светловолосого голубоглазого мужчины и гетерозиготной кареглазой светловолосой женщины.

Ответ

Светловолосый голубоглазый мужчина aabb.
Гетерозиготная кареглазая светловолосая женщина aaBb.


Врожденная близорукость наследуется как аутосомный доминантный признак, отсутствие веснушек - как аутосомный рецессивный признак. Признаки находятся в разных парах хромосом. У отца врожденная близорукость и отсутствие веснушек, у матери нормальное зрение и веснушки. В семье трое детей, двое близорукие без веснушек, один с нормальным зрением и с веснушками. Составьте схему решения задачи. Определите генотипы родителей и родившихся детей. Рассчитайте вероятность рождения детей близоруких и с веснушками. Объясните, какой закон имеет место в данном случае.

Ответ

А - врожденная близорукость, а - нормальное зрение.
B - веснушки, b - отсутствие веснушек.

Отец A_bb, мать aaB_.
Дети A_bb, aaB_.

Если отец bb, то все его дети имеют b, значит второй ребенок aaBb.
Если мать aa, то все её дети имеют a, значит первый ребенок Aabb.
Если первый ребенок имеет bb, то он взял одну b от матери и одну от отца, значит мать aaBb.
Если второй ребенок имеет аа, то он взял одну а от матери и одну от отца, значит отец Aabb.


Вероятность рождения близоруких детей с веснушками 25%, работает закон независимого наследования.

У родителей со свободной мочкой уха и треугольной ямкой на подбородке родился ребенок со сросшейся мочкой уха и гладким подбородком. Определите генотипы родителей, первого ребенка, фенотипы и генотипы других возможных потомков. Составьте схему решения задачи. Признаки наследуются независимо.

Ответ

В потомстве проявились рецессивные признаки, которые у родителей находились в скрытом состоянии.

А - свободная мочка уха, а - сросшаяся мочка уха.
B - треугольная ямка на подбородке, b - гладкий подбородок.

Ребенок aabb, родители A_B_.
Ребенок аа получил одну а от отца, другую от матери; одну b от отца, другую от матери, следовательно, родители AaBb.


AB Ab aB ab
AB AABB AABb AaBB AaBb
Ab AABb AAbb AaBb Aabb
aB AaBB AaBb aaBB aaBb
ab AaBb Aabb aaBb aabb

9 A_B_ свободная мочка уха, треугольная ямка на подбородке
3 A_bb свободная мочка уха, гладкий подбородок
3 aaB_ сросшаяся мочка уха, треугольная ямка на подбородке
1 aabb сросшаяся мочка уха, гладкий побдородок

Черный хохлатый петух скрещен с такой же курицей. От них получены 20 цыплят: 10 черных хохлатых, 5 бурых хохлатых, 3 черных без хохла и 2 бурых без хохла. Определите генотипы родителей, потомков и закономерность наследования признаков. Гены двух признаков не сцеплены, доминантные признаки - черное оперение (А), хохлатость (В).

Ответ

A - черное оперение, а - бурое оперение.
B - хохлатость, b - без хохла.

Петух A_B_, курица A_B_.
Цыплята A_B_ 10 шт., aaB_ 5 шт., A_bb 3 шт., aabb 2 шт.

Если ребенок имеет аа, то он взял одну а от матери и одну от отца, значит родители AaB_.
Если ребенок имеет bb, то он взял одну b от матери и одну от отца, значит родители AaBb.


AB Ab aB ab
AB AABB AABb AaBB AaBb
Ab AABb AAbb AaBb Aabb
aB AaBB AaBb aaBB aaBb
ab AaBb Aabb aaBb aabb

9 A_B_ черные хохлатые
3 A_bb черные без хохла
3 aaB_ бурые хохлатые
1 aabb бурые без хохла

Закономерность наследования признаков - закон независимого наследования.

Растение с красными плодами образует гаметы, несущие доминантные аллели АВ , а растение с желтыми плодами образует гаметы, несущие рецессивные аллели ав . Сочетание этих гамет приводит к образованию дигетерозиготы АаВв , поскольку гены А и В доминантные, то все гибриды первого поколения будут иметь красные и гладкие плоды.

Скрестим растения с красными и гладкими плодами из поколения F 1 c растением, имеющим желтые и опушенные плоды (Рис. 2). Определим генотип и фенотип потомства.

Рис. 2. Схема скрещивания ()

Один из родителей является дигетерозиготой, его генотип АаВв , второй родитель гомозиготен по рецессивным аллелям, его генотип - аавв . Дигетерозиготный организм продуцирует следующие типы гамет: АВ , Ав , аВ , ав ; гомозиготный организм - гаметы одного типа: ав . В результате получается четыре генотипических класса: АаВв , Аавв , ааВв , аавв и четыре фенотипических класса: красные гладкие, красные опушенные, желтые гладкие, желтые опушенные.

Расщепление по каждому из признаков: по окраске плодов 1:1, по кожице плодов 1:1.

Это типичное анализирующее скрещивание, которое позволяет определять генотип особи с доминантным фенотипом. Дигибридное скрещивание представляет собой два независимо идущих моногибридных скрещивания, результаты которых накладываются друг на друга. Описанный механизм наследования при дигибридном скрещивании относится к признакам, гены которых расположены в разных парах негомологичных хромосом, то есть в одной паре хромосом располагаются гены, отвечающие за окраску плодов томата, а в другой паре хромосом располагаются гены, отвечающие за гладкость или опушенность кожицы плодов.

От скрещивания двух растений гороха, выросших из желтых и гладких семян, получено 264 желтых гладких, 61 желтых морщинистых, 78 зеленых гладких, 29 зеленых морщинистых семян. Определите, к какому скрещиванию относится наблюдаемое соотношение фенотипических классов.

В условии дано расщепление от скрещивания, получено четыре фенотипических класса со следующим расщеплением 9:3:3:1, и это свидетельствует о том, что были скрещены два дигетерозиготных растения, имеющих следующий генотип: АаВв и АаВв (Рис. 3).

Рис. 3 Схема скрещивания к задаче 2 ()

Если построить решетку Пеннета, в которой по горизонтали и вертикали запишем гаметы, в квадратиках - зиготы, полученные при слиянии гамет, то получим четыре фенотипических класса с указанным в задаче расщеплением (Рис. 4).

Рис. 4. Решетка Пеннета к задаче 2 ()

Неполное доминирование по одному из признаков. У растения львиный зев красная окраска цветков не полностью подавляет белую окраску, сочетание доминантного и рецессивного аллелей обуславливает розовую окраску цветов. Нормальная форма цветка доминирует над вытянутой и пилорической формой цветка (Рис. 5).

Рис. 5. Скрещивание львиного зева ()

Скрестили между собой гомозиготные растения с нормальными белыми цветками и гомозиготным растением с вытянутыми красными цветками. Необходимо определить генотип и фенотип потомства.

Условие задачи:

А - красная окраска - доминантный признак

а - белая окраска - рецессивный признак

В - нормальная форма - доминантный признак

в - пилорическая форма - рецессивный признак

ааВВ - генотип белой окраски и нормальной формы цветка

ААвв - генотип красных пилорических цветков

Они продуцируют гаметы одного типа, в первом случае гаметы, несущие аллели аВ , во втором случае - Ав . Сочетание этих гамет приводит к возникновению дигетерозиготы, имеющий генотип АаВв - все гибриды первого поколения будут иметь розовую окраску и нормальную форму цветков (Рис. 6).

Рис. 6. Схема скрещивания к задаче 3 ()

Скрестим гибриды первого поколения для определения окраски и формы цветка у поколения F 2 при неполном доминировании по окраске.

Генотипы родительских организмов - АаВв и АвВв ,

гибриды образуют гаметы четырех типов: АВ , Ав , аВ , ав (Рис. 7).

Рис. 7. Схема скрещивания гибридов первого поколения, задача 3 ()

При анализе полученного потомства можно сказать, что у нас не получилось традиционного расщепления по фенотипу 9:3 и 3:1, так как у растений наблюдается неполное доминирование по окраске цветков (Рис. 8).

Рис. 8. Таблица Пеннета к задаче 3 ()

Из 16 растений: три красных нормальных, шесть розовых нормальных, одно красное пилорическое, два розовых пилорических, три белых нормальных и одно белое пилорическое.

Мы рассмотрели примеры решения задач на дигибридное скрещивание.

У человека карий цвет глаз доминирует над голубым, а способность лучше владеть правой рукой доминирует над леворукостью.

Задача 4

Кареглазая правша вышла замуж за голубоглазового левшу, у них родилось два ребенка - голубоглазый правша и голубоглазый левша. Определить генотип матери.

Запишем условие задачи:

А - карие глаза

а - голубые глаза

В - праворукость

в - леворукость

аавв - генотип отца, он гомозиготен по рецессивным аллелям двух генов

А - ? В - ? - генотип матери имеет два доминантных гена и теоретически может иметь

генотипы: ААВВ , АаВВ , ААВв , АаВв .

F 1 - аавв , ааВ - ?

При наличии генотипа ААВВ у матери не наблюдалось бы никакого расщепления в потомстве: все дети были бы кареглазыми правшами и имели бы генотип АаВв , поскольку у отца образуются гаметы одного типа ав (Рис. 9).

Рис. 9. Схема скрещивания к задаче 4 ()

Два ребенка имеют голубые глаза - значит, мать гетерозиготна по цвету глаз Аа , кроме этого один из детей - левша - это говорит о том, что мать имеет рецессивный ген в , отвечающий за леворукость, то есть мать - типичная дигетерозигота. Схема скрещивания и возможные дети от этого брака представлены на Рис. 10.

Рис. 10. Схема скрещивания и возможные дети от брака ()

Тригибридным называется такое скрещивание, при котором родительские организмы отличаются друг от друга по трем парам альтернативных признаков.

Пример: скрещивание гороха с желтыми гладкими семенами и пурпурной окраской цветков с зелеными морщинистыми семенами и белой окраской цветков.

У тригибридных растений проявятся доминантные признаки: желтая окраска и гладкая форма семян с пурпурной окраской цветка (Рис. 11).

Рис. 11. Схема тригибридного скрещивания ()

Тригибридные растения в результате независимого расщепления генов продуцируют

восемь типов гамет - женских и мужских, сочетаясь, они дадут в F 2 64 комбинации, 27 генотипов и 8 фенотипов.

Список литературы

  1. Мамонтов С.Г., Захаров В.Б., Агафонова И.Б., Сонин Н.И. Биология 11 класс. Общая биология. Профильный уровень. - 5-е издание, стереотипное. - Дрофа, 2010.
  2. Беляев Д.К. Общая биология. Базовый уровень. - 11 издание, стереотипное. - М.: Просвещение, 2012.
  3. Пасечник В.В., Каменский А.А., Криксунов Е.А. Общая биология, 10-11 класс. - М.: Дрофа, 2005.
  4. Агафонова И.Б., Захарова Е.Т., Сивоглазов В.И. Биология 10-11 класс. Общая биология. Базовый уровень. - 6-е изд., доп. - Дрофа, 2010.
  1. Biorepet-ufa.ru ().
  2. Kakprosto.ru ().
  3. Genetika.aiq.ru ().

Домашнее задание

  1. Дать определение дигибридному скрещиванию.
  2. Написать возможные типы гамет, продуцируемых организмами со следующими генотипами: ААВВ, CcDD.
  3. Дать определение тригибридному скрещиванию.

Генетика, ее задачи. Наследственность и изменчивость - свойства организмов. Методы генетики. Основные генетические понятия и символика. Хромосомная теория наследственности. Современные представления о гене и геноме

Генетика, ее задачи

Успехи естествознания и клеточной биологии в XVIII-XIX веках позволили ряду ученых высказать предположения о существовании неких наследственных факторов, определяющих, например, развитие наследственных болезней, однако эти предположения не были подкреплены соответствующими доказательствами. Даже сформулированная Х. де Фризом в 1889 году теория внутриклеточного пангенеза, которая предполагала существование в ядре клетки неких «пангенов », определяющих наследственные задатки организма, и выход в протоплазму только тех из них, которые определяют тип клетки, не смогла изменить ситуацию, как и теория «зародышевой плазмы» А. Вейсмана, согласно которой приобретенные в процессе онтогенеза признаки не наследуются.

Лишь труды чешского исследователя Г. Менделя (1822-1884) стали основополагающим камнем современной генетики. Однако, несмотря на то, что его труды цитировались в научных изданиях, современники не обратили на них внимания. И лишь повторное открытие закономерностей независимого наследования сразу тремя учеными — Э. Чермаком, К. Корренсом и Х. де Фризом — вынудило научную общественность обратиться к истокам генетики.

Генетика — это наука, изучающая закономерности наследственности и изменчивости и методы управления ими.

Задачами генетики на современном этапе являются исследование качественных и количественных характеристик наследственного материала, анализ структуры и функционирования генотипа, расшифровка тонкой структуры гена и методов регуляции генной активности, поиск генов, вызывающих развитие наследственных болезней человека и методов их «исправления», создание нового поколения лекарственных препаратов по типу ДНК-вакцин, конструирование с помощью средств генной и клеточной инженерии организмов с новыми свойствами, которые могли бы производить необходимые человеку лекарственные препараты и продукты питания, а также полная расшифровка генома человека.

Наследственность и изменчивость - свойства организмов

Наследственность — это способность организмов передавать свои признаки и свойства в ряду поколений.

Изменчивость — свойство организмов приобретать новые признаки в течение жизни.

Признаки — это любые морфологические, физиологические, биохимические и иные особенности организмов, по которым одни из них отличаются от других, например цвет глаз. Свойствами же называют любые функциональные особенности организмов, в основе которых лежит определенный структурный признак или группа элементарных признаков.

Признаки организмов можно разделить на качественные и количественные . Качественные признаки имеют два-три контрастных проявления, которые называют альтернативными признаками, например голубой и карий цвет глаз, тогда как количественные (удойность коров, урожайность пшеницы) не имеют четко выраженных различий.

Материальным носителем наследственности является ДНК. У эукариот различают два типа наследственности: генотипическую и цитоплазматическую . Носители генотипической наследственности локализованы в ядре и далее речь пойдет именно о ней, а носителями цитоплазматической наследственности являются находящиеся в митохондриях и пластидах кольцевые молекулы ДНК. Цитоплазматическая наследственность передается в основном с яйцеклеткой, поэтому называется также материнской.

В митохондриях клеток человека локализовано небольшое количество генов, однако их изменение может оказывать существенное влияние на развитие организма, например приводить к развитию слепоты или постепенному снижению подвижности. Пластиды играют не менее важную роль в жизни растений. Так, в некоторых участках листа могут присутствовать бесхлорофильные клетки, что приводит, с одной стороны, к снижению продуктивности растения, а с другой — такие пестролистные организмы ценятся в декоративном озеленении. Воспроизводятся такие экземпляры в основном бесполым способом, так как при половом размножении чаще получаются обычные зеленые растения.

Методы генетики

1. Гибридологический метод, или метод скрещиваний, заключается в подборе родительских особей и анализе потомства. При этом о генотипе организма судят по фенотипическим проявлениям генов у потомков, полученных при определенной схеме скрещивания. Это старейший информативный метод генетики, который наиболее полно впервые применил Г. Мендель в сочетании со статистическим методом. Данный метод неприменим в генетике человека по этическим соображениям.

2. Цитогенетический метод основан на исследовании кариотипа: числа, формы и величины хромосом организма. Изучение этих особенностей позволяет выявить различные патологии развития.

3. Биохимический метод позволяет определять содержание различных веществ в организме, в особенности их избыток или недостаток, а также активность целого ряда ферментов.

4. Молекулярно-генетические методы направлены на выявление вариаций в структуре и расшифровку первичной последовательности нуклеотидов исследуемых участков ДНК. Они позволяют выявить гены наследственных болезней даже у эмбрионов, установить отцовство и т. д.

5. Популяционно-статистический метод позволяет определить генетический состав популяции, частоту определенных генов и генотипов, генетический груз, а также наметить перспективы развития популяции.

6. Метод гибридизации соматических клеток в культуре позволяет определить локализацию определенных генов в хромосомах при слиянии клеток различных организмов, например, мыши и хомяка, мыши и человека и т. д.

Основные генетические понятия и символика

Ген — это участок молекулы ДНК, или хромосомы, несущий информацию об определенном признаке или свойстве организма.

Некоторые гены могут оказывать влияние на проявление сразу нескольких признаков. Такое явление называется плейотропией . Например, ген, обусловливающий развитие наследственного заболевания арахнодактилии (паучьи пальцы), вызывает также искривление хрусталика, патологии многих внутренних органов.

Каждый ген занимает в хромосоме строго определенное место — локус . Так как в соматических клетках большинства эукариотических организмов хромосомы парные (гомологичные), то в каждой из парных хромосом находится по одной копии гена, отвечающего за определенный признак. Такие гены называются аллельными .

Аллельные гены чаще всего существуют в двух вариантах — доминантном и рецессивном. Доминантной называют аллель, которая проявляется вне зависимости от того, какой ген находится в другой хромосоме, и подавляет развитие признака, кодируемого рецессивным геном. Доминантные аллели обозначаются обычно прописными буквами латинского алфавита (A, B, C и др.), а рецессивные — строчными (a, b, c и др.). Рецессивные аллели могут проявляться только в том случае, если они занимают локусы в обеих парных хромосомах.

Организм, у которого в обеих гомологичных хромосомах находятся одинаковые аллели, называется гомозиготным по данному гену, или гомозиготой (AA, aa, ААBB, ааbb и т. д.), а организм, у которого в обеих гомологичных хромосомах находятся разные варианты гена — доминантный и рецессивный — называется гетерозиготным по данному гену, или гетерозиготой (Aa, АаBb и т. д.).

Ряд генов может иметь три и более структурных варианта, например группы крови по системе AB0 кодируются тремя аллелями — I A , I B , i. Такое явление называется множественным аллелизмом. Однако даже в этом случае каждая хромосома из пары несет только одну аллель, то есть все три варианта гена у одного организма не могут быть представлены.

Геном — совокупность генов, характерная для гаплоидного набора хромосом.

Генотип — совокупность генов, характерная для диплоидного набора хромосом.

Фенотип — совокупность признаков и свойств организма, которая является результатом взаимодействия генотипа и окружающей среды.

Поскольку организмы отличаются между собой многими признаками, установить закономерности их наследования можно только при анализе двух и более признаков в потомстве. Скрещивание, при котором рассматривается наследование и проводится точный количественный учет потомства по одной паре альтернативных признаков, называется моногибридны м, по двум парам — дигибридным , по большему количеству признаков — полигибридным .

По фенотипу особи далеко не всегда можно установить ее генотип, поскольку как гомозиготный по доминантному гену организм (АА), так и гетерозиготный (Аа) будет иметь в фенотипе проявление доминантной аллели. Поэтому для проверки генотипа организма с перекрестным оплодотворением применяют анализирующее скрещивание — скрещивание, при котором организм с доминантным признаком скрещивается с гомозиготным по рецессивному гену. При этом гомозиготный по доминантному гену организм не будет давать расщепления в потомстве, тогда как в потомстве гетерозиготных особей наблюдается равное количество особей с доминантным и рецессивным признаками.

Для записи схем скрещиваний чаще всего применяются следующие условные обозначения:

Р (от лат. парента — родители) — родительские организмы;

$♀$ (алхимический знак Венеры — зеркало с ручкой) — материнская особь;

$♂$ (алхимический знак Марса — щит и копье) — отцовская особь;

$×$ — знак скрещивания;

F 1 , F 2 , F 3 и т. д. — гибриды первого, второго, третьего и последующих поколений;

F а — потомство от анализирующего скрещивания.

Хромосомная теория наследственности

Основоположник генетики Г. Мендель, равно как и его ближайшие последователи, не имели ни малейшего представления о материальной основе наследственных задатков, или генов. Однако уже в 1902-1903 годах немецкий биолог Т. Бовери и американский студент У. Сэттон независимо друг от друга предположили, что поведение хромосом при созревании клеток и оплодотворении позволяет объяснить расщепление наследственных факторов по Менделю, т. е., по их мнению, гены должны быть расположены в хромосомах. Данные предположения стали краеугольным камнем хромосомной теории наследственности.

В 1906 году английские генетики У. Бэтсон и Р. Пеннет обнаружили нарушение менделевского расщепления при скрещивании душистого горошка, а их соотечественник Л. Донкастер в экспериментах с бабочкой крыжовенной пяденицей открыл сцепленное с полом наследование. Результаты этих экспериментов явно противоречили менделевским, но если учесть, что к тому времени уже было известно о том, что количество известных признаков для экспериментальных объектов намного превышало количество хромосом, а это наводило на мысль, что каждая хромосома несет более одного гена, а гены одной хромосомы наследуются совместно.

В 1910 году начинаются эксперименты группы Т. Моргана на новом экспериментальном объекте — плодовой мушке дрозофиле. Результаты этих экспериментов позволили к середине 20-х годов XX века сформулировать основные положения хромосомной теории наследственности, определить порядок расположения генов в хромосомах и расстояния между ними, т. е. составить первые карты хромосом.

Основные положения хромосомной теории наследственности:

  1. Гены расположены в хромосомах. Гены одной хромосомы наследуются совместно, или сцепленно, и называются группой сцепления . Число групп сцепления численно равно гаплоидному набору хромосом.
  2. Каждый ген занимает в хромосоме строго определенное место — локус.
  3. Гены в хромосомах расположены линейно.
  4. Нарушение сцепления генов происходит только в результате кроссинговера.
  5. Расстояние между генами в хромосоме пропорционально проценту кроссинговера между ними.
  6. Независимое наследование характерно только для генов негомологичных хромосом.

Современные представления о гене и геноме

В начале 40-х годов ХХ века Дж. Бидл и Э. Тейтум, анализируя результаты генетических исследований, проведенных на грибе нейроспоре, пришли к выводу, что каждый ген контролирует синтез какого-либо фермента, и сформулировали принцип «один ген — один фермент».

Однако уже в 1961 году Ф. Жакобу, Ж. Л. Моно и А. Львову удалось расшифровать структуру гена кишечной палочки и исследовать регуляцию его активности. За это открытие им в 1965 году была присуждена Нобелевская премия по физиологии и медицине.

В процессе исследования, кроме структурных генов, контролирующих развитие определенных признаков, им удалось выявить и регуляторные, основной функцией которых является проявление признаков, кодируемых другими генами.

Структура прокариотического гена. Структурный ген прокариот имеет сложное строение, поскольку в его состав входят регуляторные участки и кодирующие последовательности. К регуляторным участкам относятся промотор, оператор и терминатор. Промотором называют участок гена, к которому прикрепляется фермент РНК-полимераза, обеспечивающий синтез иРНК в процессе транскрипции. С оператором , располагающимся между промотором и структурной последовательностью, может связываться белок-репрессор , не позволяющий РНК-полимеразе начать считывание наследственной информации с кодирующей последовательности, и только его удаление позволяет начать транскрипцию. Структура репрессора закодирована обычно в регуляторном гене, находящемся в другом участке хромосомы. Считывание информации заканчивается на участке гена, который называется терминатором .

Кодирующая последовательность структурного гена содержит информацию о последовательности аминокислот в соответствующем белке. Кодирующую последовательность у прокариот называют цистроном , а совокупность кодирующих и регуляторных участков гена прокариот — опероном . В целом прокариоты, к которым относится и кишечная палочка, имеют сравнительно небольшое количество генов, расположенных в единственной кольцевой хромосоме.

Цитоплазма прокариот может содержать также дополнительные небольшие кольцевые или незамкнутые молекулы ДНК, которые называются плазмидами. Плазмиды способны встраиваться в хромосомы и передаваться от одной клетки к другой. Они могут нести информацию о половых признаках, патогенности и устойчивости к антибиотикам.

Структура эукариотического гена. В отличие от прокариот, гены эукариот не имеют оперонной структуры, поскольку не содержат оператора, и каждый структурный ген сопровождается только промотором и терминатором. Кроме того, в генах эукариот значащие участки (экзоны ) чередуются с незначащими (интронами ), которые полностью переписываются на иРНК, а затем вырезаются в процессе их созревания. Биологическая роль интронов состоит в снижении вероятности мутаций в значащих участках. Регуляция генов эукариот намного сложнее, нежели описанная для прокариот.

Геном человека. В каждой клетке человека в 46 хромосомах находится около 2 м ДНК, плотно упакованной в двойную спираль, которая состоит примерно из 3,2 $×$ 10 9 нуклеотидных пар, что обеспечивает около 10 1900000000 возможных уникальных комбинаций. К концу 80-х годов ХХ века было известно расположение примерно 1500 генов человека, однако их общее количество оценивали примерно в 100 тыс., поскольку только наследственных болезней у человека имеется примерно 10 тыс., не говоря уже о количестве разнообразных белков, содержащихся в клетках.

В 1988 году стартовал международный проект «Геном человека», который к началу XXI века закончился полной расшифровкой последовательности нуклеотидов. Он дал возможность понять, что два разных человека на 99,9 % имеют сходные последовательности нуклеотидов, и лишь остающиеся 0,1 % определяют нашу индивидуальность. Всего было обнаружено примерно 30-40 тыс. структурных генов, однако затем их количество было снижено до 25-30 тыс. Среди этих генов имеются не только уникальные, но и повторяющиеся сотни и тысячи раз. Тем не менее данные гены кодируют гораздо большее количество белков, например десятки тысяч защитных белков — иммуноглобулинов.

97 % нашего генома является генетическим «мусором», который существует только потому, что умеет хорошо воспроизводиться (РНК, которые транскрибируются на этих участках, никогда не покидают ядро). Например, среди наших генов есть не только «человеческие» гены, но и 60 % генов, похожих на гены мушки дрозофилы, а с шимпанзе нас роднит до 99 % генов.

Параллельно с расшифровкой генома происходило и картирование хромосом, вследствие этого удалось не только обнаружить, но и определить расположение некоторых генов, отвечающих за развитие наследственных заболеваний, а также генов-мишеней лекарственных препаратов.

Расшифровка генома человека пока не дает прямого эффекта, поскольку мы получили своеобразную инструкцию по сборке такого сложного организма, как человек, но не научились изготавливать его или хотя бы исправлять погрешности в нем. Тем не менее эра молекулярной медицины уже на пороге, во всем мире идет разработка так называемых генопрепаратов, которые смогут блокировать, удалять или даже замещать патологические гены у живых людей, а не только в оплодотворенной яйцеклетке.

Не следует забывать и о том, что в эукариотических клетках ДНК содержится не только в ядре, но также в митохондриях и пластидах. В отличие от ядерного генома, организация генов митохондрий и пластид имеет много общего с организацией генома прокариот. Несмотря на то что эти органеллы несут менее 1 % наследственной информации клетки и не кодируют даже полного набора белков, необходимых для их собственного функционирования, они способны существенно влиять на некоторые признаки организма. Так, пестролистность у растений хлорофитума, плюща и других наследует незначительное число потомков даже при скрещивании двух пестролистных растений. Это обусловлено тем, что пластиды и митохондрии передаются большей частью с цитоплазмой яйцеклетки, поэтому такая наследственность называется материнской, или цитоплазматической, в отличие от генотипической, которая локализуется в ядре.

В предыдущей статье мы говорили о заданиях линии С6 в целом. Начиная с этого поста будут разбираться конкретные задачи по генетике, которые входили в тестовые задания прошлых лет.

Иметь хорошее представление о такой биологической дисциплине как генетика — наука о наследственности и изменчивости — просто необходимо для жизни. Тем более, что генетика в нашей стране имеет такую многострадальную историю…

Подумать только, Россия из лидирующей страны в области изучения генетики в начале ХХ века, превращается в дремучего монстра по вытравливанию из сознания людей даже просто генетической терминологии начиная с конца 30-х до середины 50-х годов.

Разве можно простить режиму умерщвление пытками и голодом величайшего генетика, благороднейшего служителя народу и науке, создателя Всесоюзного института растениеводства в Ленинграде, академика (1887 — 1943).

Начнем разбор реальных заданий линии С6 с задач на дигибридное скрещивание , которые требуют знания по наследованию признаков двух пар аллельных генов (но являющихся по отношению друг к другу неаллельными), находящимися в разных парах гомологичных хромосом, поэтому наследуемых .

Самое удивительное, что уровень сложности этих заданий очень различается, в чем мы с вами сейчас и убедимся на примерах решения нескольких заданий.

Изучая далее материал этой статьи, благодаря моим подробным объяснениям, надеюсь, что и более сложные задания для вас окажутся понятными. А для более успешного освоения задач на дигибридное скрещивание предлагаю вашему вниманию свою книжку:

Задача 1. Про свиней на дигибридное скрещивание (самая простая)

У свиней ч ерная окраска шерсти (А) доминирует над рыжей (а), длинная щетина (В) — над короткой (в). Гены не сцеплены.Какое потомство может быть получено при скрещивании черного с длинной щетиной дигетерозиготного самца с гомозиготной черной самкой с короткой щетиной. Составьте схему решения задачи. Определите генотипы родителей, потомства, фенотипы потомства и их соотношение.

Сначала хочу немного обратить ваше внимание на такие моменты:

Во-первых, почему эта задача на дигибридное скрещивание? В задании требуется определить распределение в наследовании двух признаков: окраски шерсти (А или а) и длины (В или в). Причем указано, что геныне сцеплены, то есть изучаемые признаки находятся в разных парах гомологичных хромосом и наследуютсянезависимо друг от друга по закону Менделя. Это значит, что потомство будет образовываться от всех возможных случайных сочетаний гамет, образуемых самцом и самкой.

Во-вторых, именно эта задача на дигибридное скрещивание является самой простой из такого типа заданий. В ней заранее оговаривается, что изучаемые признаки не сцеплены. К тому же, мысразу можем (без анализа всевозможных сочетаний рождения потомства) по данному фенотипу родителей записать их генотип.

Решение:

1) генотипы родителей:

самец АаВb — так как про самца сказано в условии задачи, что он дигетерозиготен, то есть гетерозиготен по обоим изучаемым признакам, то в записи его генотипа по каждому признаку присутствуют: А — доминантный черный цвет шерсти и а — рецессивный рыжий цвет шерсти; В — доминантная длинная щетина и b — рецессивная короткая;

самка ААbb — так как про неё сказано, что она гомо зиготна по цвету шерсти, которая у неё тоже черная, значит записываем только АА , а про длину шерсти не сказано гомо зиготна она или гете розиготна, так как эта информация была бы лишняя!!! (и так понятно, что если у самки шерсть короткая, то она может быть тоже только гомо зиготной по этому рецессивному признаку bb ).

Конечно , такие длинные рассуждения по поводу записи генотипа родителей по данному в условии задачи их фенотипу вам приводить не обязательно. Главное, что первым пунктом вы должны указать правильно, ни в коем случае не ошибившись, генотипы обоих родителей.

2) гаметы:

дигетеро зиготный самец будет производить с равной вероятностью четыре сорта сперматозоидов АВ, Аb, аВ, аb (по закону чистоты гамет, как следствие , каждая гамета может иметь только один аллель любого гена. А так как изучается наследование сразу двух признаков, то в каждую гамету мы вписываем по одному аллельному гену каждого изучаемого признака);

дигомо зиготная самка (ААbb — как мы выяснили у неё именно такой генотип) будет иметь все одинаковые яйцеклетки — Аb.

3) потомство:

так как все однотипные яйцеклетки самки Аb могут быть оплодотворены любыми четырьмя видами сперматозоидов АВ, Аb, аВ и аb с равной вероятностью, то возможно рождение потомков с такими

четырьмя генотипами: ААВb, ААbb, АаВb и Ааbb в соотношении 1: 1: 1: 1 (25%, 25%, 25%, 25%)

и двумя фенотипами: А-В- — черные длинношерстные — 50% и А-bb — черные короткошерстные — 50% (пробелами записаны те места, где совершенно без разницы для проявления фенотипа какой второй доминантный или рецессивный ген в этих парах аллельных генов может присутствовать).

Итак, мы полностью ответили на вопросы задания: решение составлено по стандартной схеме (родители, гаметы, потомство), определены генотипы родителей и потомства, определены фенотипы потомства и определено возможное соотношение генотипов и фенотипов потомства.

Задача 2. Про растение дурман на дигибридное скрещивание, но с более сложным условием .

Растение дурман с пурпурными цветками (А) и гладкими коробочками (b), скрестили с растением, имеющим пурпурные цветки и колючие коробочки. В потомстве получены следующие фенотипы: с пурпурными цветками и колючими коробочками, с пурпурными цветками и гладкими коробочками, с белыми цветками и колючими коробочками, с пурпурными цветками и гладкими коробочками. Составьте схему решения задачи. Определите генотипы родителей, потомства и возможное соотношение фенотипов. Установите характер наследования признаков.

Обратите внимание, что в этом задании мы уже не можем сразу однозначно ответить на вопрос о генотипе родителей, а значит и сразу расписать полную информацию о гаметах, ими производимых. Это возможно сделать только внимательно проанализировав информацию о фенотипах потомства.

В ответе еще придется не забыть обязательно указать характер наследования признаков (независимо наследуются признаки или сцеплено). В предыдущем то задании это было дано.

Решение:

1) определим сначала пусть и неоднозначно возможные генотипы родителей

Р: А — bb (пурп., гладк.) и А — В — (пурп., колюч.)

2) также пока неоднозначно выписываем информацию о производимых ими гаметах

G: Аb, — b и АВ, А -, — В, — —

3) запишем исходя из известного фенотипа потомства их возможные генотипы

F1 А — В — (пурп.,колюч.) А — bb (пурп., гладк.)

……. ааВ — (белые, колюч.) ааbb (белые, гладк.)

Теперь, самые главные сведения, которые мы можем извлечь из всего вышеизложенного:

а) так как среди потомства есть растения с гладкими коробочками (а это рецессивный признак), то генотипы обоих родителей обязательно должны иметь ген b. То есть мы уже можем и в генотип второго родителя вписать b (маленькое): А-Вb;

б) так как среди потомства есть растения с белыми цветками (а это рецессивный признак), то генотипы обоих родителей должны иметь ген а (маленькое);

4) только теперь мы можем уже полностью выписать генотипы обоих родителей: .. … ………………….. Ааbb и АаВb и производимые ими………………………………………….

гаметы: …. Аb, аb и АВ, Аb, аВ, аb

5) поскольку по условию задачи в потомстве были обнаружены все возможные сочетания признаков растений:

…………. «с пурпурными цветками и колючими коробочками,

………….. с пурпурными цветками и гладкими коробочками,

………….. с белыми цветками и колючими коробочками,

………….. с белыми цветками и гладкими коробочками»,

то это возможно лишь при независимом наследовании признаков;

6) поскольку мы определили, что признаки не сцеплены и наследуются независимо друг от друга, то необходимо произвести все возможные сочетания скрещиваний имеющихся гамет. Удобнее всего произвести запись используя решетку Пеннета. В нашей задаче она будет, слава богу, не классическая (4 х 4 = 16), а всего 2 х 4 = 8:

G: АВ Аb аВ аb

Аb ААВb ААbb АаВb Ааbb

………….. пурп.колюч пурп.гладк пурп.колюч пурп.гладк

ав АаВb Ааbb ааВb ааbb

…………. пурп.колюч пурп.гладк бел.колюч бел.гладк

7) распределение в потомстве будет

по генотипу: 1 ААВb: 1 ААbb: 2 АаВb: 2 Ааbb: 1 ааВb: 1 ааbb

по фенотипу: 3/8 — пурпурные колючие (А-Вb);

………………….. 3/8 — пурпурные гладкие (А-bb);

………………….. 1/8 — белые колючие (ааВb);

………………….. 1/8 — белые гладкие (ааbb).

Задача 3. Совсем простая, если разбираться в смысле генетической терминологии

От скрещивания 2-х сортов ячменя, у одного из которых колос двурядный плотный, а у другого — многордный рыхлый, получили гибриды F 1 , с двурядным рыхлым колосом. Какие результаты по фенотипу и генотипу получатся в возвратных скрещиваниях, если наследование признаков независимое? Составьте схемы скрещиваний.

Поскольку сказано, что скрещивали сорта ячменя (да чего угодно, «фигурирует» слово сорт), значит речь идет о гомозиготных организмах по обоим изучаемым признакам. А какие признаки здесь рассматриваются:

а) форма колоса и б) его качество. Да еще и сказано, что наследование признаков независимое, значит мы можем применить выкладки, следуемые из 3-го закона Менделя для дигибридного скрещивания.

Также сказано и то, какими признаками обладали гибриды в F 1 . Они были с двурядным рыхлым колосом — значит эти признаки и являются доминантными над многорядностью и плотностью колоса. Поэтому мы можем теперь вводить обозначения аллелей генов этих двух изучаемых признаков и не ошибемся в правильности использования больших и малых букв алфавита.

Обозначим:

аллельный ген двурядного колоса А, а многорядного — а;
аллельный ген рыхлого колоса В , а плотного — b ,
тогда генотипы исходных двух сортов ячменя будут выглядеть так: ААbb и aaBB . От их скрещивания в F 1 получатся гибриды: AaBb .

Ну а теперь уж провести возвратные скрещивания гибридов AaBb с каждой из исходных родительских форм по отдельности с AAbb , а потом и с aaBB , уверен, ни для кого не составит труда, не правда ли?

Задача 4. «Не рыжий, вовсе я не рыжий, не рыжий я, а золотой»

Женщина с карими глазами и рыжими волосами вышла замуж за мужчину с не рыжими волосами и голубыми глазами. Известно, что у отца женщины глаза были карие, а у матери - голубые, у обоих - рыжие волосы. У отца мужчины были не рыжие волосы и голубые глаза, у матери - карие глаза и рыжие волосы. Какими являются генотипы всех указанных людей? Какими могут быть глаза и волосы у детей этих супругов?

Аллельный ген, ответственный за проявление карего цвета глаз обозначим А (это всем хорошо известно, что карий цвет глаз доминирует над голубым цветом), а аллельный ему ген голубых глаз, соответственно, будет а . Обязательно одна и та же буква алфавита, так как это один признак - цвет глаз.

Аллельный ген не рыжих волос (цвет волос - второй изучаемый признак) обозначим В , так как он доминирует над аллелем, отвечающим за проявление рыжей окраски волос — b.

Генотип женщины с карими глазами и рыжими волосами мы можем записать сначала неполностью, а так А-bb . Но так как сказано, что её отец был кареглазый с рыжими волосами, то есть с генотипом А-bb , а мать её была голубоглазая и тоже с рыжими волосами (ааbb ), то второй аллель женщины при А мог быть только а , то есть её генотип будет Ааbb .

Генотип голубоглазого мужчины с не рыжими волосами можно сначала записать так: ааB- . Но так как у его матери были волосы рыжие, то есть bb , то второй аллельный ген при В у мужчины мог быть только b . Таким орбразом, генотип мужчины запишется aaBb . Генотипы его родителей: отца - aaB- ; матери - А-bb.

Дети от брака анализируемых супругов Ааbb x aaBb (а гаметы соответственно: Ab, ab и aB, ab ) будут с равновероятными генотипами AaBb, Aabb, aaBb, aabb или по фенотипу: кареглазые не рыжие, кареглазые рыжие, голубоглазые не рыжие, голубоглазые рыжие в соотношении 1:1:1:1 .

*************************************************************************

Да, теперь вы сами видите какие неравноценные по сложности могут быть задания. Несправедливо, да несправедливо, отвечаю я, как репетитор ЕГЭ по биологии. Нужна удача, да нужна удача!

Но согласитесь, что удача окажется полезной лишь для тех, кто реально «в теме». Без знания законов наследственности Грегора Менделя невозможно решить и первое задание, поэтому вывод может быть один: .

В следующей статье репетитора биологии по Скайпу разберем задачи на наследование, которые правильно решают еще меньшее количество учащихся.

Для тех, кто хочет хорошо разобраться как надо решать задачи по генетике на дигибридное скрещивание, могу предложить свою книгу: « «

***************************************

У кого будут вопросы к репетитору биологии по Скайпу ,обращайтесь в комментариях. У меня на блоге вы можете приобрести ответы на все тесты ОБЗ ФИПИ за все годы проведения экзаменов и .